【Linux】进程间通信(万字详解)—— 匿名管道 | 命名管道 | System V | 共享内存

avatar
作者
筋斗云
阅读量:1

🌈欢迎来到Linux专栏~~进程通信


  • (꒪ꇴ꒪(꒪ꇴ꒪ )🐣,我是Scort
  • 目前状态:大三非科班啃C++中
  • 🌍博客主页:张小姐的猫~江湖背景
  • 快上车🚘,握好方向盘跟我有一起打天下嘞!
  • 送给自己的一句鸡汤🤔:
  • 🔥真正的大师永远怀着一颗学徒的心
  • 作者水平很有限,如果发现错误,可在评论区指正,感谢🙏
  • 🎉🎉欢迎持续关注!
    在这里插入图片描述

请添加图片描述

文章目录

请添加图片描述

一. 进程间通信介绍

进程之间会存在特定的协同工作的场景:

  • 数据传输:一个进程要把自己的数据交给另一个进程,让其继续进行处理
  • 资源共享:多个进程之间共享同样的资源。
  • 通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。
  • 进程控制:有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变

进程间通信的本质就是,让不同的进程看到同一份资源

进程是具有独立性的。虚拟地址空间+页表 保证了进程运行的独立性(进程内核数据结构+进程代码和数据)

进程通信的前提,首先需要让不同的进程看到同一份“内存”(特定的结构组织)

  • 这块内存应该属于谁呢?为了维持进程独立性,它一定不属于进程A或B,它属于操作系统。

综上,进程间通信的前提就是:由OS参与,提供一份所有通信进程都能看到的公共资源

进程间通信的发展

  • 管道
    • 匿名管道pipe
    • 命名管道pipe
  • System V标准 进程间通信
    • System V 消息队列
    • System V 共享内存
    • System V 信号量
  • POSIX标准 进程间通信(多线程详谈)
    • 消息队列
    • 共享内存
    • 信号量
    • 互斥量
    • 条件变量
    • 读写锁

二. 管道

什么是管道?

  • 有入口,有出口,都是单向传输资源的(数据)

在这里插入图片描述

所以计算机领域设计者,设计了一种单向通信的方式 —— 管道

🌍匿名管道

众所周知,父子进程是两个独立进程,父子通信也是进程间通信的一种,基于父子间进程通信就是匿名管道。我们首先要对匿名管道有一个宏观的认识

父进程创建子进程,子进程需要以父进程为模板创建自己的files_struct ,而不是与父进程共用;但是struct file这个结构体就不会拷贝,因为打开文件也与创建进程无关(文件的数据不用拷贝)

  • 因为左边是进程相关数据结构,右边是文件相关结构

在这里插入图片描述

😎匿名管道原理
  1. 父进程创建管道,对同一文件分别以读&写方式打开

在这里插入图片描述

  1. 父进程fork创建子进程
    在这里插入图片描述

  2. 因为管道是一个只能单向通信的信道,父子进程需要关闭对应读写端,至于谁关闭谁,取决于通信方向。
    在这里插入图片描述

于是,通过子进程继承父进程资源的特性,双方进程看到了同一份资源。

😎创建匿名管道pipe

pipe谁调用就让以读写方式打开一个文件(内存级文件)

#include <unistd.h> int pipe(int pipefd[2]); 
  • 参数pipefd输出型参数!通过这个参数拿到两个打开的fd
  • 返回值:成功返回0;失败返回-1

数组pipefd用于返回两个指向管道读端和写端的文件描述符:

数组元素含义
pipefd[0]~嘴巴管道读端的文件描述符
pipefd[1] ~ 钢笔管道写端的文件描述符

此处提取查一下要用到的函数

  • man2是获得系统(linux内核)调用的用法; man 3 是获得标准库(标准C语言库、glibc)函数的文档
//linux中用man可以查哦 #include <unistd.h> pid_t fork(void);  #include <unistd.h> int close(int fd);  #include <stdlib.h> void exit(int status); 

下面按照之前讲的原理进行逐一操作:①创建管道 ②父进程创建子进程 ③关闭对应的读写端,形成单向信道

#include <iostream> #include <unistd.h> #include <cstdio> #include <cstring> #include <string.h> #include <assert.h>  using namespace std;  int main() {     //1.创建管道     int pipefd[2] = {0};     int n = pipe(pipefd);  //失败返回-1     assert(n != -1);  //只在debug下有效     (void)n; //仅此证明n被使用过  #ifdef DEBUG     cout<< "pipefd[0]" << pipefd[0] << endl;  //3     cout<< "pipefd[1]" << pipefd[1] << endl;  //4 #endif      //2.创建子进程      pid_t id = fork();     assert(id != -1);     if(id == 0)     {         //子进程         //3. 构建单向通信的信道         //3.1 子进程关闭写端[1]         close(pipefd[1]);         exit(0);     }     //父进程     //父进程关闭读端[0]     close(pipefd[0]);          return 0; } 

在此基础上,我们就要进行通信了,实际上就是对某个文件进行写入,因为管道也是文件,下面提提前查看要用到的函数

#include <unistd.h> ssize_t write(int fd, const void *buf, size_t count);  #include <unistd.h> ssize_t read(int fd, void *buf, size_t count); 返回值: - 返回写入的字节数 - 零表示未写入任何内容,这里意味着对端进程关闭文件描述符  #include <unistd.h> unsigned int sleep(unsigned int seconds); 
😎demo代码

简单实现了管道通信的demo版本:

#include <iostream> #include <unistd.h> #include <cstdio> #include <cstring> #include <string.h> #include <assert.h> #include<sys/types.h> #include<sys/wait.h>  using namespace std;  int main() {     //1.创建管道     int pipefd[2] = {0};     int n = pipe(pipefd);  //失败返回-1     assert(n != -1);  //只在debug下有效     (void)n; //仅此证明n被使用过  #ifdef DEBUG     cout<< "pipefd[0]" << pipefd[0] << endl;  //3     cout<< "pipefd[1]" << pipefd[1] << endl;  //4 #endif      //2.创建子进程      pid_t id = fork();     assert(id != -1);     if(id == 0)     {         //子进程  - 读         //3. 构建单向通信的信道         //3.1 子进程关闭写端[1]         close(pipefd[1]);         char buffer[1024];         while(1)         {             size_t s = read(pipefd[0], buffer, sizeof(buffer)-1);             if(s > 0)             {                 buffer[s] = 0;//因为read是系统调用,没有/0,此处给加上                 cout<<"child get a message["<< getpid() << "] 爸爸对你说" << buffer << endl;             }         }         //close(pipefd[0]);         exit(0);     }      //父进程 - 写     //父进程关闭读端[0]     close(pipefd[0]);     string message = "我是父进程,我正在给你发消息";     int count = 0; //计算发送次数     char send_buffer[1024];     while(true)     {         //3.2构建一个变化的字符串         snprintf(send_buffer, sizeof(send_buffer), "%s[%d] : %d",message.c_str(), getpid(), count);         count++;         //3.3写入         write(pipefd[1], send_buffer, strlen(send_buffer));//此处strlen不能+1         //3.4 故意sleep         sleep(1);     }      pid_t ret = waitpid(id, nullptr, 0);     assert(ret != -1);     (void)ret;          return 0; } 

此处有个问题:为什么不定义一个全局的buffer来进行通信呢?

  • 因为有写时拷贝的存在,无法更改通信!

上面的方法就是把数据交给管道,让对方通过管道进行读取

😎匿名管道通信的4种情况

之前父子进程同时向显示器中写入的时候,二者会互斥 —— 缺乏访问控制

而对于管道进行读取的时候,父进程如果写的慢,子进程就会等待读取 —— 这就是说明管道具有访问控制

✨读阻塞:写快,读慢

父进程疯狂的进行写入,子进程隔10秒才读取,子进程会把这10秒内父进程写入的所有数据都一次性的打印出来!

代码如非就是在父进程添加了打印conut,子进程sleep(10),可以自行的在demo代码上添加

在这里插入图片描述

父进程写了1220次,子进程一次就给你读完了,读写之间没有关系,这就叫做流式的服务
也就是管道是面向字节流的,也就是只有字节的概念,究竟读成什么样也无法保证,甚至可能读出乱码,所以父子进程通信也是需要制定协议的,但这个我们网络再细说。。

✨写阻塞:写慢,读快

管道没有数据的时候,读端必须等待:父进程每隔2秒才进行写入,子进程疯狂的读取

请添加图片描述

✨写端关闭

父进程写入10秒,后把写端fd关闭,读端会怎么样?

  • 写入的一方,fd没有关闭,如果有数据就读,没有数据就等
  • 写入的一方,fd关闭了,读取的一方,read会返回0,表示读到了文件结尾,退出读端
#include <iostream> #include <unistd.h> #include <cstdio> #include <cstring> #include <string.h> #include <assert.h> #include<sys/types.h> #include<sys/wait.h>  using namespace std;  int main() {     //1.创建管道     int pipefd[2] = {0};     int n = pipe(pipefd);  //失败返回-1     assert(n != -1);  //只在debug下有效     (void)n; //仅此证明n被使用过  #ifdef DEBUG     cout<< "pipefd[0]" << pipefd[0] << endl;  //3     cout<< "pipefd[1]" << pipefd[1] << endl;  //4 #endif      //2.创建子进程      pid_t id = fork();     assert(id != -1);     if(id == 0)     {         //子进程  - 读         //3. 构建单向通信的信道         //3.1 子进程关闭写端[1]         close(pipefd[1]);         char buffer[1024*8];         while(1)         {             //sleep(10);//20秒读一次             //写入的一方,fd没有关闭,如果有数据就读,没有数据就等             //写入的一方,fd关闭了,读取的一方,read会返回0,表示读到了文件结尾             size_t s = read(pipefd[0], buffer, sizeof(buffer)-1);             if(s > 0)             {                 buffer[s] = 0;//因为read是系统调用,没有/0,此处给加上                 cout<<"child get a message["<< getpid() << "] 爸爸对你说" << buffer << endl;             }             else if (s == 0)             {                 cout << "write quit(father), me quit!!!" <<endl;                 break;             }         }         //close(pipefd[0]);         exit(0);     }      //父进程 - 写     //父进程关闭读端[0]     close(pipefd[0]);     string message = "我是父进程,我正在给你发消息";     int count = 0; //计算发送次数     char send_buffer[1024*8];     while(true)     {         //3.2构建一个变化的字符串         snprintf(send_buffer, sizeof(send_buffer), "%s[%d] : %d",message.c_str(), getpid(), count);         count++;         //3.3写入         write(pipefd[1], send_buffer, strlen(send_buffer));//此处strlen不能+1         //3.4 故意sleep         sleep(1);         cout<< count <<endl;         if(count == 5)         {             cout<< "父进程写端退出" << endl;             break;         }     }     close(pipefd[1]);//关闭读端      pid_t ret = waitpid(id, nullptr, 0);     assert(ret != -1);     (void)ret;       return 0; } 

运行结果如下:

请添加图片描述

✨读端关闭

读端关闭,写端继续写入,直到OS终止写进程

#include <stdio.h> #include <unistd.h> #include <string.h> #include <stdlib.h> #include <sys/types.h> #include <sys/wait.h> int main() { 	int fd[2] = { 0 }; 	if (pipe(fd) < 0){ //使用pipe创建匿名管道 		perror("pipe"); 		return 1; 	} 	pid_t id = fork(); //使用fork创建子进程 	if (id == 0){ 		//child 		close(fd[0]); //子进程关闭读端 		//子进程向管道写入数据 		const char* msg = "hello father, I am child..."; 		int count = 10; 		while (count--){ 			write(fd[1], msg, strlen(msg)); 			sleep(1); 		} 		close(fd[1]); //子进程写入完毕,关闭文件 		exit(0); 	} 	//father 	close(fd[1]); //父进程关闭写端 	close(fd[0]); //父进程直接关闭读端(导致子进程被操作系统杀掉) 	int status = 0; 	waitpid(id, &status, 0); 	printf("child get signal:%d\n", status & 0x7F); //打印子进程收到的信号 	return 0; } 

运行结果显示,子进程退出时收到的是13号信号

在这里插入图片描述
通过kill -l命令可以查看13对应的具体信号

在这里插入图片描述
由此可知,当发生情况四时,操作系统向子进程发送的是SIGPIPE信号将子进程终止的。

🐋总结上述的4中场景:

  • 写快,读慢,写满了不能再写了
  • 写慢,读快,管道没有数据的时候,读端必须等待
  • 写关,读取的一方,read会返回0,表示读到了文件结尾,退出读端
  • 读关,写继续写,OS终止写进程 ——

🧐由上总结出匿名管道的5个特点 ——

  1. 管道是一个单向通信的通信管道,是半双工通信的一种特殊情况
  2. 管道是用来进行具有血缘关系的进程进行进程间通信 —— 常用于父子通信
  3. 管道具有通过让进程间协同,提供了访问控制!
  4. 管道是 面向字节流 —— 协议(后面详谈)
  5. 管道是基于文件的,管道的声明周期是随进程的
😎管道的大小

管道的容量是有限的,如果管道已满,那么写端将阻塞或失败,那么管道的最大容量是多少呢?

ps:原子性:要么做了,要么不做,没有中间状态

方法1 :man手册查询

在这里插入图片描述
然后我们可以使用uname -r命令,查看自己使用的Linux版本

在这里插入图片描述
我使用的是Linux 2.6.11之后的版本,因此管道的最大容量是65536字节

方法二:自行测试

也就是如果读端一直不读取,写端又不断的写入,当管道被写满后,写端进程就会被挂起。据此,我们可以写出以下代码来测试管道的最大容量。

#include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <sys/wait.h> int main() { 	int fd[2] = { 0 }; 	if (pipe(fd) < 0){ //使用pipe创建匿名管道 		perror("pipe"); 		return 1; 	} 	pid_t id = fork(); //使用fork创建子进程 	if (id == 0){ 		//child  		close(fd[0]); //子进程关闭读端 		char c = 'a'; 		int count = 0; 		//子进程一直进行写入,一次写入一个字节 		while (1){ 			write(fd[1], &c, 1); 			count++; 			printf("%d\n", count); //打印当前写入的字节数 		} 		close(fd[1]); 		exit(0); 	} 	//father 	close(fd[1]); //父进程关闭写端  	//父进程不进行读取  	waitpid(id, NULL, 0); 	close(fd[0]); 	return 0; } 

写端进程最多写65536字节的数据就被操作系统挂起了,也就是说,我当前Linux版本中管道的最大容量是65536字节

在这里插入图片描述

🌍命名管道

为了解决匿名管道只能在父子之间通信,我们引入命名管道,可以在任意不相关进程进行通信

多个进程打开同一个文件,OS只会创建一个struct_file

在这里插入图片描述

命名管道就是一种特殊类型的文件(可以被打开,但不会将数据刷新进磁盘),两个进程通过命名管道的文件名打开同一个管道文件,此时这两个进程也就看到了同一份资源,进而就可以进行通信了。

命名管道就是通过唯一路径/文件名的方式定位唯一磁盘文件的

ps:命名管道和匿名管道一样,都是内存文件,只不过命名管道在磁盘有一个简单的映像(所以有名字),但这个映像的大小永远为0,因为命名管道和匿名管道都不会将通信数据刷新到磁盘当中。

🎨创建命名管道

💛 make FIFOs 在命令行上创建命名管道

mkfifo (named pipes) 

FIFO:First In First Out 队列呀

在这里插入图片描述

来个小实验:
命令行上执行的命令echocat都是进程,所以这就是通过管道文件进行的进程间通信 ——

在这里插入图片描述
请添加图片描述
💛 那么如何用代码实现命名管道进程间通信的呢?

//查手册:man 3 mkfifo #include <sys/types.h> #include <sys/stat.h>  int mkfifo(const char *pathname, mode_t mode); 
  • pathname:管道文件路径
  • mode:管道文件权限
  • 返回值:创建成功返回0;创建失败返回-1,并设置错误码

我touch了server.c和client.c,最终希望在serverclient两个进程之间相互通信,先写一个Makefile ——

.PHONY:all all:client server  client:client.cxx 	g++ -o $@ $^ -std=c++11 server:server.cxx 	g++ -o $@ $^ -std=c++11  .PHONY:clean clean: 	rm -f client server 
  • Makefile自顶向下扫描,只会把第一个目标文件作为最终的目标文件。所以要一次性生成两个可执行程序,需要定义伪目标.PHONY: all,并添加依赖关系
🎨基于命名管道通信

comm.h

我们创建一个共用的头文件,这只是为了两个程序能有看到同一个资源的能力了

#ifndef _COMM_H_ //能避免头文件的重定义 #define _COMM_H_  //hpp和.h的区别:.h里面只有声明,没有实现,而.hpp里声明实现都有,后者可以减少.cpp的数量  #include <iostream> #include <string> #include <unistd.h> #include <cstdio> #include <cstring> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h>  using namespace std;  #define MODE 0666 #define SIZE 128 string ipcPath = "./fifo.ipc";  #endif 

server.c

  1. 创建命名管道
  2. 读信息,并实现相应业务逻辑
#include "comm.hpp"  int main() {     //1.创建管道文件     if(mkfifo(ipcPath.c_str(), MODE) < 0)     {         perror("mkfifo");         exit(1);     }      //2. 正常的文件操作     int fd = open(ipcPath.c_str(), O_RDONLY);     if(fd < 0)     {         perror("open");         exit(2);     }      //3.编写正常的通信代码     char buffer[SIZE];     while(1)     {         memset(buffer, '\0', sizeof(buffer));         ssize_t s = read(fd, buffer, sizeof(buffer)-1);         if(s > 0)         {             cout << "client say >" << buffer << endl;         }         else if(s == 0)         {             //说明写端关闭了             cerr << "read end of file, client quit, server quit too" <<endl;         }         else         {             //读取失败             perror("read");             break;         }      }     //4. 关闭文件     close(fd);     unlink(ipcPath.c_str());//通信完毕,删除文件     return 0; } 

client.c
此时不需要再创建命名管道,只需要获取已打开的命名管道文件

  • 从键盘拿到了待发送数据
  • 发送数据,也就是向管道中写入
#include "comm.hpp"  int main() {     //不需要创建fifo,只需获取即可     int fd = open(ipcPath.c_str(), O_WRONLY);     if(fd < 0)     {         perror("open");         exit(1);     }     //2.ipc通信     string buffer;     while(1)     {         cout << "Place Enter Message:";         std::getline(std::cin, buffer);         write(fd, buffer.c_str(), sizeof(buffer));     }          //3.关闭     close(fd);     return 0; } 

效果展示:
一定要先运行服务端server创建命名管道,再运行客户端,实现了不相关进程通信 ——

请添加图片描述
如果我想让多个子进程来执行打印任务
在这里插入图片描述
当然我们就要调整一下server.c的业务逻辑:

#include "comm.hpp" #include <sys/wait.h>  static void getMessage(int fd) {     //3.编写正常的通信代码     char buffer[SIZE];     while(1)     {         memset(buffer, '\0', sizeof(buffer));         ssize_t s = read(fd, buffer, sizeof(buffer)-1);         if(s > 0)         {             cout << "[" << getpid() << "] " << "client say >" << buffer << endl;         }         else if(s == 0)         {             //说明写端关闭了             cerr << "[" << getpid() << "] " << "read end of file, client quit, server quit too" <<endl;         }         else         {             //读取失败             perror("read");             break;         }     } }  int main() {     //1.创建管道文件     if(mkfifo(ipcPath.c_str(), MODE) < 0)     {         perror("mkfifo");         exit(1);     }      //log("创建管道文件成功", Debug) << "step 1" <<endl;      //2. 正常的文件操作     int fd = open(ipcPath.c_str(), O_RDONLY);     if(fd < 0)     {         perror("open");         exit(2);     }     //log("打开管道文件成功", Debug) << "step 2" <<endl;      int nums = 3;     for(int i = 0; i < nums; i++)     {         pid_t id = fork();         if(id==0)         {             //子进程             getMessage(fd);             exit(2);         }     }      for(int i = 0; i < nums; i++)     {         waitpid(-1, nullptr, 0);     }      //4. 关闭文件     close(fd);     //log("关闭管道文件成功", Debug) << "step 3" <<endl;     unlink(ipcPath.c_str());//通信完毕,删除文件     //log("删除管道文件成功", Debug) << "step 4" <<endl;      return 0; } 

🌍 pipe vs fifo

为什么pipe叫做匿名管道和和fifo叫做命名管道?

  • 匿名管道文件属于内存级的文件,不需要名字,因为它是通过父子继承的方式看到同一份资源
  • 命名管道一定要有名字,从而使不相关进程通过唯一路径定位同一个文件

三. System V标准下的进程间通信方式

下面我们要学习System V标准,是在同一主机内的进程间通信方案,是站在OS层面,专门为进程间通信设计的方案。

进程通信的本质是先让不同进程看到同一份资源,System V提供了这三个主流方案 ——

  • 共享内存 - 传递数据
  • 消息队列(有点落伍) - 传递数据
  • 信号量 (多线程讲POSIX标准) - 实现进程同步&控制详谈

🌈共享内存

基于共享内存进行进程间通信原理 ——

  1. 首先在物理内存当中申请一块内存空间,将这块内存空间分别与各个进程各自的页表之间建立映射
  2. 进程虚拟地址空间当中开辟空间(共享内存)并将虚拟地址填充到各自页表的对应位置,使得虚拟地址和物理地址之间建立起对应关系
  3. 所以两个进程便看到了同一份物理内存,这块物理内存就叫做共享内存

在这里插入图片描述

💦共享内存的建立

共享内存提供者是操作系统OS,那么操作系统要不要管理共享内存呢? -> 先描述再组织

共享内存 = 共享内存块 + 对应的共享内存的内核数据结构来描述其属性

💛 创建共享内存
#include <sys/ipc.h> #include <sys/shm.h>  int shmget(key_t key, size_t size, int shmflg); 

参数:

  • key:为了使不同进程看到同一段共享内存,即让不同进程拿到同一个ID,需要由用户自己设定,但如何设定的与众不同好难啊,就要借助下面这个函数。
    在这里插入图片描述所以怎么样保证两个进程拿到同一个key值呢?

    #include <sys/types.h> #include <sys/ipc.h>  key_t ftok(const char *pathname, int proj_id); 
    • pathname:自定义路径名
    • proj_id:自定义项目ID
    • 返回值:成功后,返回生成的key_t值。失败时返回1
  • szie共享内存的大小,建议是4KB的整数倍,因为共享内存在内核中申请的基本单位是页(内存页)。

  • shmflg标记位,这一看就是宏,都是只有一个比特位是1且相互不重复的数据,这样|在一起,就能传递多个标志位

    • IPC_CREAT:如果单独使用IPC_CREAT或者flg为0,如果创建共享内存时,底层已经存在,获取之;如果不存在,就创建之
    • IPC_EXCL单独使用没有意义,通常要搭配起来IPC_CREAT | IPC_EXCL,如果底层不存在,就创建,并返回;如果底层存在就出错返回。这样的意义在于 如果调用成功,得到的一定是一个全新的共享内存。

返回值:成功后,将返回有效的共享内存标识符。失败了,返回-1,并设置errno错误码。

💛 控制共享内存

手动查看与手动删除

ipcs -m 查看ipc资源,不带选项默认查看消息队列(-q)、共享内存(-m)、信号量(-s) ipcrm -m + shmid //删除共享内存 

system V IPC资源,生命周期随内核!所以我们要手动 / 自动删除,那怎么样自动删除呢?

💛 控制共享内存

#include <sys/ipc.h>  #include <sys/shm.h>  int shmctl(int shmid, int cmd, struct shmid_ds *buf); 

参数:

  • cmd:设置IPC_RMID就行,IPC_RMID:即便是有进程和当下的shm挂接,依旧删除共享内存(强大)
  • buf:这就是描述共享内存的数据结构啊!
    在这里插入图片描述
    返回值:失败返回-1,成功返回0
💛 挂接和去关联

attach 挂接 ——

#include <sys/types.h> #include <sys/shm.h>  void *shmat(int shmid, const void *shmaddr, int shmflg); 
  • shmaddr:挂接到什么位置,我们也不知道,给NULL,让操作系统来设置
  • shmflg: 给0

最重要的是返回值

  • 这个地址一定是虚拟地址,类似malloc返回申请到的起始地址
  • 失败返回-1,并设置错误码

detach 去关联 ——

int shmdt(const void *shmaddr); 
  • shmaddr:shmat返回的地址

注意:去关联,不是释放共性内存,而是取消当前进程和共享内存的关系,本质是去掉进程和物理内存构建映射关系的页表项去掉

返回值:成功返回0,失败返回-1

💛 shmid 和 key

只有创建的时候用key,大部分用户访问共享内存,都用的是shmid(用户层)

💦共享内存的进程间通信

comm.h

#pragma one  #include <iostream> #include <cstdio> #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #include "log.hpp"  using namespace std;//不推荐   #define PATH_NAME "/home/ljj" #define PROJ_ID 0x66 

server.c

  1. 创建公共的key

  2. 创建共享内存 - 建议创建一个全新的共享内存:因为是通信的发起者
    带选项IPC_CREAT | IPC_EXCL若和系统中已经存在的ID冲突,则出错返回;
    注意到其中权限perm是0,那也可以设置一下

    int shmid = shmget(key, SIZE, IPC_CREAT | IPC_EXCL | 0666);  

    在这里插入图片描述

  3. 将指定的共享内存,挂接到自己的地址空间上

  4. 将指定的共享内存,从自己的地址空间去关联

  5. 删除共享内存

#include "comm.hpp"   string TransToHex(key_t k) {     char buffer[32];     snprintf(buffer, sizeof(buffer), "0x%x", k);     return buffer; }  int main() {     //1.创建公共的key值     key_t k = ftok(PATH_NAME, PROJ_ID);     assert(k != -1);      Log("create key done", Debug) << "server key : " << TransToHex(k) << endl;          //2. 创建共享内存  - 建议创建一个全新的共享内存:因为是通信的发起者     int shmid = shmget(k, SHM_SIZE, IPC_CREAT | IPC_EXCL | 0666);     if(shmid == -1)     {         perror("shmget");         exit(1);     }     Log("creat shm done", Debug) << "shmid : " << shmid << endl;     sleep(10);      //3.将指定的共享内存,挂接到自己的地址空间上     char *shmaddr = (char*)shmat(shmid, nullptr, 0);     Log("attach shm done", Debug) << "shmid : " << shmid << endl;     sleep(10);            //这里就是通信的代码       //4.将指定的共享内存,从自己的地址空间去关联     int n = shmdt(shmaddr);     assert(n != -1);     (void)n;     Log("detach shm done", Debug) << "shmid : " << shmid << endl;     sleep(10);       //5.删除共享内存     n = shmctl(shmid, IPC_RMID, nullptr);     assert(n != -1);     (void)n;     Log("delete shm done", Debug) << "shmid : " << shmid << endl;       return 0; } 

关于申请共享内存的大小size,我们说建议是4KB的整数倍,因为共享内存在内核中申请的基本单位是页(内存页),4KB。如果我申请4097Byte大小的空间,内核会向上取整给我4096* 2Byte,诶?那我监视到的↑怎么还是4097啊!虽然在底层申请到的是4096*2,但不会多给你,这样也可能引起错误~

client.c

  • 只需获取共享内存;不用删除
#include "comm.hpp"  int main() {     key_t k = ftok(PATH_NAME, PROJ_ID);     if(k < 0)     {         Log("create key failed", Error) << "client key : " << k << endl;         exit(1);     }     Log("create key done", Debug) << "client key : " << k << endl;          //获取共享内存     int shmid = shmget(k, SHM_SIZE, IPC_CREAT);     if(shmid < 0)     {         Log("create shm failed", Error) << "client key : " << k << endl;         exit(2);     }     Log("attach shm success", Error) << "client key : " << k << endl;     sleep(10);       //挂接地址     char* shmaddr = (char*)shmat(shmid, nullptr, 0);     if(shmaddr == nullptr)     {         Log("attach shm failed", Error) << "client key : " << k << endl;         exit(3);     }      Log("attach shm success", Error) << "client key : " << k << endl;     sleep(10);       //使用      //去关联     int n = shmdt(shmaddr);     assert(n != -1);     Log("datach shm success", Error) << "client key : " << k << endl;     sleep(10);      //你只管用,不需要删除共享内存          return 0; } 

效果展示:
写一个命令行脚本来监视共享内存 ——

while :; do ipcs -m; echo "_________________________________________________________________"; sleep 1; done 

注意观察nattch这个参数的变化:0->1->2->1->0

请添加图片描述

上面的框架都搭建好了之后,接下来就是通信部分:
1️⃣客户端不断向共享内存写入数据:

//client将共享内存看成一个char类型的buffer char a = 'a'; for(; a <= 'z'; a++) {     //每一次都想共享内存shmaddr的起始地址     snprintf(shmaddr, SHM_SIZE - 1,\         "hello server, 我是其他进程, 我的pid: %d, inc: %c\n",\         getpid(), a);     sleep(2); } 

2️⃣服务端不断读取共享内存当中的数据并输出:

//将共享内存当成一个大字符串 for(;;) {     printf("%s\n", shmaddr);     sleep(1); } 

结果如下:
在这里插入图片描述

ps:我们发现即使我们没有向server端发消息,server也是不断的在读取信息的

💦共享内存与管道进行对比

共享内存是所有进程间通信方式中最快的一种通信方式。

在这里插入图片描述
将一个文件从一个进程传输到另一个进程需要进行四次拷贝操作:

我们再来看看共享内存通信:

在这里插入图片描述
键盘写入shm,另一端可以直接获取到,哪里还需要什么拷贝?最多两次拷贝(键盘输入一次,输出到外设一次)

💦共享内存归属谁

共享内存的区域是在OS内核?还是在用户空间?

  • 用户空间!

其中文本、初始化数据区、未初始化数据区、堆、栈、环境变量、命令行参数、再 往上就是1GOS内核,其中剩余3G都是用户自己支配的

用户空间:不用经过系统调用,直接进行访问!

在这里插入图片描述

  • 所以双方进程如果要进行通信,直接进行内存级的读和写(减少了许多拷贝)

那为什么之前将的pipe和fifo都要通过read、write进行通信,为什么呢?

因为管道双方看到的资源都属于内核级的文件,我们无权直接进行访问,必须调用系统接口

💦共享内存的特征
  • 共享内存的生命周期随内核
  • 共享内存是所有进程中速度最快的,只需要经过页表映射,不需来回拷贝(不经过OS)
  • 共享内存没有提供访问控制,读写双方根本不知道对方的存在,会带来并发问题

🌈消息队列(了解)

严重过时:接口与文件不对应

创建消息队列,与创建共享内存极其相似:

#include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h>  int msgget(key_t key, int msgflg); 

删除消息队列:

#include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h>  int msgctl(int msqid, int cmd, struct msqid_ds *buf); 

我们可以通过key找到同一个共享内存。

我们发现共享内存、消息队列、信号量的 ——

  • 接口都类似
  • 数据结构的第一个结构类型struct ipc_perm是完全一致的!

我们由shmid申请到的都是01234… 大胆推测,在内核中,所有的ipc资源都是通过数组组织起来的。可是描述它们的结构体类型并不相同啊?但是~ System V标准的IPC资源,xxxid_ds结构体的第一个成员都是ipc_perm都是一样的。

🌈信号量

简单认识一下信号量

多个执行流,互相运行的时候互相干扰,我们不加保护的访问了同样的资源(临界资源),在非临界区多个执行流互相是不影响的

信号量本质是一个计数器,类似int count,用来衡量临界资源中的资源数目(好比电影院里面的座位,我们需要买票进入

在这里插入图片描述

  1. 什么是临界资源?

    我们把多个进程(执行流)看到的公共资源 叫做临界资源

  2. 什么是临界区?

    我们把自己的进程,访问临界资源的代码 —— 临界区

  3. 什么是原子性?

    一件事儿,要么不做,要么就做完,没有中间态。

  4. 什么是互斥?

    任意一个时刻只能允许一个执行流进入临界区

在这里插入图片描述

n--:可能因为时序问题,而导致n有中间状态,导致数据不一致

  • 这种操作是不安全的,如果一个n--操作只有一行汇编,该操作是原子的!!

做总结: 信号量计数器

  • 申请信号量 -> 计数器 — -> P操作 -> 必须是原子的!
  • 释放信号量 -> 计数器 — -> P操作 -> 必须是原子的!!

📢写在最后

应该是我写过最长的一篇博客了
请添加图片描述

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!