AI大模型部署Ubuntu服务器攻略

avatar
作者
猴君
阅读量:1

一、下载Ollama

在线安装:

在linux中输入命令curl -fsSL https://ollama.com/install.sh | sh
由于在linux下载ollama需要经过外网,网络会不稳定,很容易造成连接超时的问题。

离线安装:

步骤一: 下载Ollama离线版本
在linux服务器中输入命令:lscpu查看服务器型号
然后再该地址中下载Ollama离线版本:
https://github.com/ollama/ollama/releases
步骤二: 下载install.sh文件修改内容
地址为:https://ollama.com/install.sh

修改位置1:
注释掉在线下载ollama的命令
修改位置2:

修改ollama安装地址,将ollama离线版本与install放到一起
install.sh最终修改的版本:

#!/bin/sh # This script installs Ollama on Linux. # It detects the current operating system architecture and installs the appropriate version of Ollama.  set -eu  status() { echo ">>> $*" >&2; } error() { echo "ERROR $*"; exit 1; } warning() { echo "WARNING: $*"; }  TEMP_DIR=$(mktemp -d) cleanup() { rm -rf $TEMP_DIR; } trap cleanup EXIT  available() { command -v $1 >/dev/null; } require() {     local MISSING=''     for TOOL in $*; do         if ! available $TOOL; then             MISSING="$MISSING $TOOL"         fi     done      echo $MISSING }  [ "$(uname -s)" = "Linux" ] || error 'This script is intended to run on Linux only.'  ARCH=$(uname -m) case "$ARCH" in     x86_64) ARCH="amd64" ;;     aarch64|arm64) ARCH="arm64" ;;     *) error "Unsupported architecture: $ARCH" ;; esac  IS_WSL2=false  KERN=$(uname -r) case "$KERN" in     *icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;     *icrosoft) error "Microsoft WSL1 is not currently supported. Please upgrade to WSL2 with 'wsl --set-version <distro> 2'" ;;     *) ;; esac  VER_PARAM="${OLLAMA_VERSION:+?version=$OLLAMA_VERSION}"  SUDO= if [ "$(id -u)" -ne 0 ]; then     # Running as root, no need for sudo     if ! available sudo; then         error "This script requires superuser permissions. Please re-run as root."     fi      SUDO="sudo" fi  NEEDS=$(require curl awk grep sed tee xargs) if [ -n "$NEEDS" ]; then     status "ERROR: The following tools are required but missing:"     for NEED in $NEEDS; do         echo "  - $NEED"     done     exit 1 fi  status "Downloading ollama..." # curl --fail --show-error --location --progress-bar -o $TEMP_DIR/ollama "https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"  for BINDIR in /usr/local/bin /usr/bin /bin; do     echo $PATH | grep -q $BINDIR && break || continue done  status "Installing ollama to $BINDIR..." $SUDO install -o0 -g0 -m755 -d $BINDIR # $SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $BINDIR/ollama $SUDO install -o0 -g0 -m755 ./ollama-linux-amd64 $BINDIR/ollama  install_success() {     status 'The Ollama API is now available at 127.0.0.1:11434.'     status 'Install complete. Run "ollama" from the command line.' } trap install_success EXIT  # Everything from this point onwards is optional.  configure_systemd() {     if ! id ollama >/dev/null 2>&1; then         status "Creating ollama user..."         $SUDO useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama     fi     if getent group render >/dev/null 2>&1; then         status "Adding ollama user to render group..."         $SUDO usermod -a -G render ollama     fi     if getent group video >/dev/null 2>&1; then         status "Adding ollama user to video group..."         $SUDO usermod -a -G video ollama     fi      status "Adding current user to ollama group..."     $SUDO usermod -a -G ollama $(whoami)      status "Creating ollama systemd service..."     cat <<EOF | $SUDO tee /etc/systemd/system/ollama.service >/dev/null [Unit] Description=Ollama Service After=network-online.target  [Service] ExecStart=$BINDIR/ollama serve User=ollama Group=ollama Restart=always RestartSec=3 Environment="PATH=$PATH"  [Install] WantedBy=default.target EOF     SYSTEMCTL_RUNNING="$(systemctl is-system-running || true)"     case $SYSTEMCTL_RUNNING in         running|degraded)             status "Enabling and starting ollama service..."             $SUDO systemctl daemon-reload             $SUDO systemctl enable ollama              start_service() { $SUDO systemctl restart ollama; }             trap start_service EXIT             ;;     esac }  if available systemctl; then     configure_systemd fi  # WSL2 only supports GPUs via nvidia passthrough # so check for nvidia-smi to determine if GPU is available if [ "$IS_WSL2" = true ]; then     if available nvidia-smi && [ -n "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then         status "Nvidia GPU detected."     fi     install_success     exit 0 fi  # Install GPU dependencies on Linux if ! available lspci && ! available lshw; then     warning "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."     exit 0 fi  check_gpu() {     # Look for devices based on vendor ID for NVIDIA and AMD     case $1 in         lspci)             case $2 in                 nvidia) available lspci && lspci -d '10de:' | grep -q 'NVIDIA' || return 1 ;;                 amdgpu) available lspci && lspci -d '1002:' | grep -q 'AMD' || return 1 ;;             esac ;;         lshw)             case $2 in                 nvidia) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[10DE\]' || return 1 ;;                 amdgpu) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[1002\]' || return 1 ;;             esac ;;         nvidia-smi) available nvidia-smi || return 1 ;;     esac }  if check_gpu nvidia-smi; then     status "NVIDIA GPU installed."     exit 0 fi  if ! check_gpu lspci nvidia && ! check_gpu lshw nvidia && ! check_gpu lspci amdgpu && ! check_gpu lshw amdgpu; then     install_success     warning "No NVIDIA/AMD GPU detected. Ollama will run in CPU-only mode."     exit 0 fi  if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then     # Look for pre-existing ROCm v6 before downloading the dependencies     for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do         if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then             status "Compatible AMD GPU ROCm library detected at ${search}"             install_success             exit 0         fi     done      status "Downloading AMD GPU dependencies..."     $SUDO rm -rf /usr/share/ollama/lib     $SUDO chmod o+x /usr/share/ollama     $SUDO install -o ollama -g ollama -m 755 -d /usr/share/ollama/lib/rocm     curl --fail --show-error --location --progress-bar "https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}" \         | $SUDO tar zx --owner ollama --group ollama -C /usr/share/ollama/lib/rocm .     install_success     status "AMD GPU ready."     exit 0 fi  # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora install_cuda_driver_yum() {     status 'Installing NVIDIA repository...'     case $PACKAGE_MANAGER in         yum)             $SUDO $PACKAGE_MANAGER -y install yum-utils             $SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo             ;;         dnf)             $SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo             ;;     esac      case $1 in         rhel)             status 'Installing EPEL repository...'             # EPEL is required for third-party dependencies such as dkms and libvdpau             $SUDO $PACKAGE_MANAGER -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$2.noarch.rpm || true             ;;     esac      status 'Installing CUDA driver...'      if [ "$1" = 'centos' ] || [ "$1$2" = 'rhel7' ]; then         $SUDO $PACKAGE_MANAGER -y install nvidia-driver-latest-dkms     fi      $SUDO $PACKAGE_MANAGER -y install cuda-drivers }  # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian install_cuda_driver_apt() {     status 'Installing NVIDIA repository...'     curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb      case $1 in         debian)             status 'Enabling contrib sources...'             $SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/null             if [ -f "/etc/apt/sources.list.d/debian.sources" ]; then                 $SUDO sed 's/main/contrib/' < /etc/apt/sources.list.d/debian.sources | $SUDO tee /etc/apt/sources.list.d/contrib.sources > /dev/null             fi             ;;     esac      status 'Installing CUDA driver...'     $SUDO dpkg -i $TEMP_DIR/cuda-keyring.deb     $SUDO apt-get update      [ -n "$SUDO" ] && SUDO_E="$SUDO -E" || SUDO_E=     DEBIAN_FRONTEND=noninteractive $SUDO_E apt-get -y install cuda-drivers -q }  if [ ! -f "/etc/os-release" ]; then     error "Unknown distribution. Skipping CUDA installation." fi  . /etc/os-release  OS_NAME=$ID OS_VERSION=$VERSION_ID  PACKAGE_MANAGER= for PACKAGE_MANAGER in dnf yum apt-get; do     if available $PACKAGE_MANAGER; then         break     fi done  if [ -z "$PACKAGE_MANAGER" ]; then     error "Unknown package manager. Skipping CUDA installation." fi  if ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then     case $OS_NAME in         centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;         rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;         fedora) [ $OS_VERSION -lt '37' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '37';;         amzn) install_cuda_driver_yum 'fedora' '37' ;;         debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;         ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;         *) exit ;;     esac fi  if ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; then     KERNEL_RELEASE="$(uname -r)"     case $OS_NAME in         rocky) $SUDO $PACKAGE_MANAGER -y install kernel-devel kernel-headers ;;         centos|rhel|amzn) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE kernel-headers-$KERNEL_RELEASE ;;         fedora) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE ;;         debian|ubuntu) $SUDO apt-get -y install linux-headers-$KERNEL_RELEASE ;;         *) exit ;;     esac      NVIDIA_CUDA_VERSION=$($SUDO dkms status | awk -F: '/added/ { print $1 }')     if [ -n "$NVIDIA_CUDA_VERSION" ]; then         $SUDO dkms install $NVIDIA_CUDA_VERSION     fi      if lsmod | grep -q nouveau; then         status 'Reboot to complete NVIDIA CUDA driver install.'         exit 0     fi      $SUDO modprobe nvidia     $SUDO modprobe nvidia_uvm fi  # make sure the NVIDIA modules are loaded on boot with nvidia-persistenced if command -v nvidia-persistenced > /dev/null 2>&1; then     $SUDO touch /etc/modules-load.d/nvidia.conf     MODULES="nvidia nvidia-uvm"     for MODULE in $MODULES; do         if ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; then             echo "$MODULE" | sudo tee -a /etc/modules-load.d/nvidia.conf > /dev/null         fi     done fi  status "NVIDIA GPU ready." install_success 

出现该内容说明Ollama已经安装完成

二、启动Nginx并部署Vue

启动nginx命令:systemctl start nginx.service
查看nginx状态:systemctl status nginx.service
关闭nginx命令:systemctl stop nginx.service

修改子配置文件,因为子配置文件内是写http的内容。
nginx服务所在地址为:/etc/nginx/sites-available
进入该目录编辑default文件:vim default

index index.html index.htm index.nginx-debian.html;    # First attempt to serve request as file, then         # as directory, then fall back to displaying a 404.         try_files $uri $uri/ @router; }  location @router {         rewrite ^.*$ /index.html last; } 

如果你前端使用的是vue并且用了vue-router,那么就需要配置该代码,否则你进行router跳转的时候,就会出现404的问题。

三、启动Python脚本

进入存放python脚本的目录,运行命令:python xxx.py。运行脚本后,系统可能会提示有一些模块没有安装,按照提示安装即可。
命令:pip install module_name
其中可能有些脚本提示不对,比如:
ModuleNotFoundError: No module named 'docx'
如果出现这个问题,不能直接安装docx模块,而是应该安装python-docx。
将该安装的库全部安装后,进入放置python脚本的目录启动入口文件,短暂启动命令:python ai_analysis.py

持久后台运行命令:
nohup python ai_analysis.py /opt/app/llm_python/ai_analysis_project/log 2>&1

四、目前项目需要的库

使用MimiCPM需要的库,官方测试所用的环境:
Pillow10.1.0
torch
2.1.2 / 1.13.0(原本的库版本)
torchvision0.16.2 / 0.17.1(原本的库版本)
transformers
4.40.0
sentencepiece0.1.99
accelerate
0.30.1
bitsandbytes==0.43.1

AI分析所需要的库
langchain
langchain_community

分析文档所需要的库
pandasai
python-docx
fitz
faiss-gpu (conda install faiss-gpu -c pytorch)

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!