十大排序算法

avatar
作者
筋斗云
阅读量:0

排序算法的分类

1插入:插入,折半插入,希尔

2交换:冒泡,快速

3选择:简单选择,堆

4归并:归并(不只二路归并)

5基数:

1.插入排序

void insert_sort() {     for (int i = 1; i < n; i ++ )     {         int x = a[i];         int j = i-1;          while (j >= 0 && x < a[j])         {             a[j+1] = a[j];             j -- ;         }         a[j+1] = x;     } }

2.选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到全部待排序的数据元素的个数为零。选择排序是不稳定的排序方法。

void select_sort() {     for (int i = 0; i < n; i ++ )     {         int k = i;         for (int j = i+1; j < n; j ++ )         {             if (a[j] < a[k])                 k = j;         }         swap(a[i], a[k]);     } }

3.冒泡排序

void bubble_sort() {     for (int i = n-1; i >= 1; i -- )     {         bool flag = true;         for (int j = 1; j <= i; j ++ )             if (a[j-1] > a[j])             {                 swap(a[j-1], a[j]);                 flag = false;             }         if (flag) return;     } }

4.希尔排序

void shell_sort() {     for (int gap = n >> 1; gap; gap >>= 1)     {         for (int i = gap; i < n; i ++ )         {             int x = a[i];             int j;             for (j = i; j >= gap && a[j-gap] > x; j -= gap)                 a[j] = a[j-gap];             a[j] = x;         }     } }

5.快速排序(最快)

void quick_sort(int l, int r) {     if (l >= r) return ;      int x = a[l+r>>1], i = l-1, j = r+1;     while (i < j)     {         while (a[++ i] < x);         while (a[-- j] > x);         if (i < j) swap(a[i], a[j]);     }     sort(l, j), sort(j+1, r); }

6.归并排序

void merge_sort(int l, int r) {     if (l >= r) return;     int temp[N];     int mid = l+r>>1;     merge_sort(l, mid), merge_sort(mid+1, r);     int k = 0, i = l, j = mid+1;     while (i <= mid && j <= r)     {         if (a[i] < a[j]) temp[k ++ ] = a[i ++ ];         else temp[k ++ ] = a[j ++ ];      }     while (i <= mid) temp[k ++ ] = a[i ++ ];     while (j <= r) temp[k ++ ] = a[j ++ ];     for (int i = l, j = 0; i <= r; i ++ , j ++ ) a[i] = temp[j]; }

7.堆排序(须知此排序为使用了模拟堆,为了使最后一个非叶子节点的编号为n/2,数组编号从1开始)

https://www.cnblogs.com/wanglei5205/p/8733524.html

void down(int u) {     int t = u;     if (u<<1 <= n && h[u<<1] < h[t]) t = u<<1;     if ((u<<1|1) <= n && h[u<<1|1] < h[t]) t = u<<1|1;     if (u != t)     {         swap(h[u], h[t]);         down(t);     } }  int main() {     for (int i = 1; i <= n; i ++ ) cin >> h[i];     for (int i = n/2; i; i -- ) down(i);     while (true)     {         if (!n) break;         cout << h[1] << ' ';         h[1] = h[n];         n -- ;         down(1);     }     return 0; }

8.基数排序

int maxbit() {     int maxv = a[0];     for (int i = 1; i < n; i ++ )         if (maxv < a[i])             maxv = a[i];     int cnt = 1;     while (maxv >= 10) maxv /= 10, cnt ++ ;      return cnt; } void radixsort() {     int t = maxbit();     int radix = 1;      for (int i = 1; i <= t; i ++ )     {         for (int j = 0; j < 10; j ++ ) count[j] = 0;         for (int j = 0; j < n; j ++ )         {             int k = (a[j] / radix) % 10;             count[k] ++ ;         }         for (int j = 1; j < 10; j ++ ) count[j] += count[j-1];         for (int j = n-1; j >= 0; j -- )         {             int k = (a[j] / radix) % 10;             temp[count[k]-1] = a[j];             count[k] -- ;         }         for (int j = 0; j < n; j ++ ) a[j] = temp[j];         radix *= 10;     }  }

9.计数排序

void counting_sort() {     int sorted[N];     int maxv = a[0];     for (int i = 1; i < n; i ++ )         if (maxv < a[i])             maxv = a[i];     int count[maxv+1];     for (int i = 0; i < n; i ++ ) count[a[i]] ++ ;     for (int i = 1; i <= maxv; i ++ ) count[i] += count[i-1];     for (int i = n-1; i >= 0; i -- )     {         sorted[count[a[i]]-1] = a[i];         count[a[i]] -- ;     }     for (int i = 0; i < n; i ++ ) a[i] = sorted[i]; }

10.桶排序(基数排序是桶排序的特例,优势是可以处理浮点数和负数,劣势是还要配合别的排序函数)

vector<int> bucketSort(vector<int>& nums) {     int n = nums.size();     int maxv = *max_element(nums.begin(), nums.end());     int minv = *min_element(nums.begin(), nums.end());     int bs = 1000;     int m = (maxv-minv)/bs+1;     vector<vector<int> > bucket(m);     for (int i = 0; i < n; ++i) {         bucket[(nums[i]-minv)/bs].push_back(nums[i]);     }     int idx = 0;     for (int i = 0; i < m; ++i) {         int sz = bucket[i].size();         bucket[i] = quickSort(bucket[i]);         for (int j = 0; j < sz; ++j) {             nums[idx++] = bucket[i][j];         }     }     return nums; }

    广告一刻

    为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!