Spring AI 是 Spring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。
一、Spring AI 简介
据 Spring AI 官网描述,该项目的灵感来自著名的 Python 项目,如 LangChain 和 LlamaIndex,但 Spring AI 并不是这些项目的直接复制。Spring AI 相信下一波 Generative AI 生成式应用程序将不仅面向 Python 开发人员,而且将在许多编程语言中广泛应用。
Spring AI 的核心是提供抽象,作为开发 Java AI 应用程序的基础,提供以下功能:
1、提供多种大模型服务对接能力,包括业界大多数主流大模型服务,如 OpenAI、微软、亚马逊、谷歌和 Huggingface等;
2、支持灵活的 Prompt Template 和模型输出解析 Output Parsing 能力;
3、支持多模态的生成式 AI 能力,如对话,文生图、文生语音等;
4、提供通用的可移植的 API 以访问各类模型服务和 Embedding 服务,支持同步和流式调用,同时也支持传递特定模型的定制参数;
5、支持 RAG 能力的基础组件,包括 DocumentLoader、TextSpillter、EmobeddingClient、VectorStore 等;
6、支持 AI Spring Boot Starter 实现配置自动装配。
Spring Cloud Alibaba AI 简介
Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1[1]版本 API 完成通义系列大模型的接入。通义接入是基于阿里云灵积模型服务[2],灵积模型服务建立在“模型即服务”(Model-as-a-Service,MaaS)的理念基础之上,围绕 AI 各领域模型,通过标准化的API提供包括模型推理、模型微调训练在内的多种模型服务。
在当前最新版本中,Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,包括对话、文生图、文生语音等,开发者可以使用 Spring Cloud Alibaba AI 开发基于通义的聊天、图片或语音生成 AI 应用,框架还提供 OutParser、Prompt Template、Stuff 等实用能力。
以下是当前官方提供的 Spring Cloud Alibaba AI 应用开发示例,访问http://sca.aliyun.com可查看。
聊天对话应用
文生图应用
文生语音应用
模型输出解析OutputParser(实现从 String 到自动 POJO 映射)
使用 Prompt Template
让 AI 模型接入外部数据(Prompt Stuff)
现在我们来做个实例,来使用Spring AI实现一些简单的功能:
1、在项目 pom.xml 中加入 Spring Cloud Alibaba 依赖:
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.3.2</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.cesske</groupId> <artifactId>demo</artifactId> <version>0.0.1-SNAPSHOT</version> <name>demo</name> <description>Demo project for Spring Boot</description> <url/> <licenses> <license/> </licenses> <developers> <developer/> </developers> <scm> <connection/> <developerConnection/> <tag/> <url/> </scm> <properties> <java.version>17</java.version> <spring-ai.version>1.0.0-M1</spring-ai.version> </properties> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai</artifactId> </dependency> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>${spring-ai.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> <repositories> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> </project>
2、添加配置
application.yml
spring: ai: openai: api-key: sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx base-url: xxxxxxxxxxxxxxxxxxx chat: options: #model: gpt-3.5-turbo temperature: 0.3F cloud: ai: tongyi: chat: options: # Replace the following key with a valid API-KEY. api-key: sk-a3d73b1709bf4a178c28ed7c8b3b5axx