Android下HWC以及drm_hwcomposer普法(上)
引言
按摩得全套,错了,做事情得全套,普法分析也是如此。drm_hwcomposer如果对Android图形栈有一定研究的童鞋们应该知道它是Android提供的一个的图形后端合成处理HAL模块的实现。但是在分析这个之前我们非常有必要了解一下Android的HWC前世今生,然后再来看drm_hwcomposer是如何配合HWC框架的
一.普法HWC
这里我们对HWC的普法主要从如下接方面展开进行:
- HWC的概述
- HWC的进化
- HWC中重要概念和实现逻辑
1.1 HWC概述
我们知道SurfaceFlinger可以使用OpenGLES合成Layer,但是这需要占用并消耗大量的GPU资源。大多数GPU都没有针对图层合成进行优化,当SurfaceFlinger通过GPU合成图层时,应用程序无法使用GPU进行自己的渲染。为了解放GPU的绘制能力,很多芯片厂家会提供硬件叠加合成,如果硬件叠加器支持的场景都可以走硬件叠加,解放GPU的绘制能力专心绘制,提升的渲染性能同时还能大幅度的降低功耗(GPU强绘制,叠加搬移并不擅长,高功耗)这个时候我们的HWC就登场了,HWC(hwcomposer)是Android中进行窗口(Layer)合成和显示的HAL层模块,其实现是特定于设备的,而且通常由显示设备制造商(OEM)完成,为SurfaceFlinger服务提供硬件支持。而HWC通过硬件设备进行图层合成,可以减轻GPU的合成压力。应用把要显示的layers交给SurfaceFlinger,SurfaceFlinger直接把这些layers交给hwc,hwc就可以在自己能力范围内做好合成,再把合成好的结果拿去显示。如果芯片显示硬件模块功能较弱,不支持某些合成场景,就会用CPU(纯软件合成)或者GPU去做。
显示设备的能力千差万别,很难直接用API表示硬件设备支持合成的Layer数量,Layer是否可以进行旋转和混合模式操作,以及对图层定位和硬件合成的限制等。因此HWC描述上述信息的流程是这样的:
SurfaceFlinger向HWC提供所有Layer的完整列表,让HWC根据其硬件能力,决定如何处理这些Layer。
HWC会为每个Layer标注合成方式,是通过GPU还是通过HWC合成。
SurfaceFlinger负责先把所有注明GPU合成的Layer合成到一个输出Buffer,然后把这个输出Buffer和其他Layer(注明HWC合成的Layer)一起交给HWC,让HWC完成剩余Layer的合成和显示。
虽然每个显示设备的能力不同,但是官方要求每个HWC硬件模块都应该支持以下能力:至少支持4个叠加层:状态栏、系统栏、应用本身和壁纸或者背景。
叠加层可以大于显示屏,例如:壁纸
同时支持预乘每像素(per-pixel)Alpha混合和每平面(per-plane)Alpha混合。
为了支持受保护的内容,必须提供受保护视频播放的硬件路径。
RGBA packing order, YUV formats, and tiling, swizzling, and stride properties
虽然上述官网要求如此,但是,但是很多hwc是没有达到上述要求的,有的叠加只支持一层的primary plane,也不支持各种混合,各种特性,毕竟建议还是建议。
Tiling:可以把Image切割成MxN个小块,最后渲染时,再将这些小块拼接起来,就像铺瓷砖一样。
Swizzling:一种拌和技术,表示向量单元可以被任意地重排或重复。 但是并非所有情况下HWC都比GPU更高效,例如:当屏幕上没有任何变化时,尤其是叠加层有透明像素并且需要进行图层透明像素混合时。在这种情况下,HWC可以要求部分或者全部叠加层都进行GPU合成,然后HWC持有合成的结果Buffer,如果SurfaceFlinger要求合成相同的叠加图层列表,HWC可以直接显示之前合成的结果Buffer,这有助于提高待机设备的电池寿命。
HWC也提供了VSync事件,用于管理渲染和图层合成时机。
1.2 HWC的进化
Android的HWC模块经历了HWC和HWC2两个版本,现在高版本默认使用HWC2,然后其加载方式也由原来的的SurfaceFlinger直接通过loader加载HAL模块,变成现在的通过HIDL调用到composer service单独加载HAL模块实现。活是越来越整得复杂了。
无论通过和中方式加载HAL的实现,我们需要知道的一点就是HAL加载的流程是,先加载hwcomposer模块得到hw_module_t,再打开composer设备得到hw_device_t。hw_module_t和hw_device_t定义在hardware/libhardware/include/hardware/hardware.h,表示一个HAL层模块和属于该模块的一个实现设备。注意这里是先有HAL模块,再有实现此模块的硬件设备。
struct hw_module_t; struct hw_module_methods_t; struct hw_device_t; typedef struct hw_module_t { uint32_t tag; uint16_t module_api_version; #define version_major module_api_version #define version_minor hal_api_version /** Identifier of module */ const char *id; /** Name of this module */ const char *name; /** Author/owner/implementor of the module */ const char *author; /** Modules methods */ struct hw_module_methods_t* methods; /** module's dso */ void* dso; #ifdef __LP64__ uint64_t reserved[32-7]; #else /** padding to 128 bytes, reserved for future use */ uint32_t reserved[32-7]; #endif } hw_module_t; typedef struct hw_module_methods_t { /** Open a specific device */ int (*open)(const struct hw_module_t* module, const char* id, struct hw_device_t** device); } hw_module_methods_t; typedef struct hw_device_t { /** tag must be initialized to HARDWARE_DEVICE_TAG */ uint32_t tag; uint32_t version; /** reference to the module this device belongs to */ struct hw_module_t* module; /** padding reserved for future use */ #ifdef __LP64__ uint64_t reserved[12]; #else uint32_t reserved[12]; #endif /** Close this device */ int (*close)(struct hw_device_t* device); } hw_device_t; #ifdef __cplusplus #define TO_HW_DEVICE_T_OPEN(x) reinterpret_cast<struct hw_device_t**>(x) #else #define TO_HW_DEVICE_T_OPEN(x) (struct hw_device_t**)(x) #endif /** * Name of the hal_module_info */ #define HAL_MODULE_INFO_SYM HMI /** * Name of the hal_module_info as a string */ #define HAL_MODULE_INFO_SYM_AS_STR "HMI" int hw_get_module(const char *id, const struct hw_module_t **module); int hw_get_module_by_class(const char *class_id, const char *inst, const struct hw_module_t **module); __END_DECLS #endif /* ANDROID_INCLUDE_HARDWARE_HARDWARE_H */
我们是基于HWC2协议实现,则需要实现hwcomposer2.h中定义的hwc2_device_t接口,而我们后续要分析的drm_hwcomposer就是基于HWC2的实现。每个HAL层模块实现都要定义一个HAL_MODULE_INFO_SYM数据结构,并且该结构的第一个字段必须是hw_module_t。这里关于它们之间的对应关系,和一些数据结构这里暂时不分析,太多了,这里我们不做过多分析。
1.3 HWC中重要的概念和核心调用逻辑
这里我们的重点不是SurfaceFlinger里面HWC相关的代码部分分析,但是该有的概念和一些核心调用逻辑还是必须提前知道:
但是我们如下的几个重要的概念我们必须要有:
- HWC2::Device:表示硬件合成显示设备
- HWC2::Display:表示一个显示屏幕,可以是物理显示屏(可以热插拔接入或者移除),也可以是虚拟显示屏,现在的游戏录屏一般都是基于虚拟屏幕实现的。
- HWC2::Layer:表示一个叠加图层,对应与应用侧的Surface。
在进行接下来的分析前,我们先来一个Layer的合成方式是怎么确定的那?大致流程如下所示!
其基本流程可以归纳总结为如下:
- 当VSync信号到来时,SurfaceFlinger被唤醒,处理Layer的新建,销毁和更新,并且为相应Layer设置期望的合成方式。
- 所有Layer更新后,SurfaceFlinger调用validateDisplay,让HWC决定每个Layer的合成方式。
- SurfaceFlinger调用getChangedCompositionTypes检查HWC是否对任何Layer的合成方式做出了改变,若是,那么SurfaceFlinger则调整对应Layer的合成方式,并且调用acceptDisplayChanges通知HWC。
- SurfaceFlinger把所有Client类型的Layer合成到Target图形缓冲区,然后调用setClientTarget把Target Buffer设置给HWC。(如果没有Client类型的Layer,则可以跳过该方法)
- 最后,SurfaceFlinger调用presentDisplay,让HWC完成剩余Layer的合成,并且在显示屏上展示出最终的合成结果。
- HWC2::Layer的创建流程
SurfaceFlinger::onMessageReceived onMessageRefresh()//Android 13上面是通过andler::handleMessage compositor.composite mCompositionEngine->present(refreshArgs) output->prepare(args, latchedLayers) Output::rebuildLayerStacks Output::collectVisibleLayers Output::ensureOutputLayerIfVisible BaseOutput::createOutputLayer(layerFE) Display::createOutputLayer hwc.createLayer mComposer.createLayer HwcDisplay::CreateLayer//drm_hwcomposer
05-26 01:57:17.427 2264 2264 D createOutputLayer: #00 pc 000000000013f994 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Display::createOutputLayer(android::sp<android::compositionengine::LayerFE> const&) const+84) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #01 pc 0000000000140dfc /system/lib64/libsurfaceflinger.so (std::__1::shared_ptr<android::compositionengine::impl::Display> android::compositionengine::impl::createOutputTemplated<android::compositionengine::impl::Display, android::compositionengine::CompositionEngine>(android::compositionengine::CompositionEngine const&)::Output::ensureOutputLayer(std::__1::optional<unsigned long>, android::sp<android::compositionengine::LayerFE> const&)+80) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #02 pc 00000000001475e0 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::ensureOutputLayerIfVisible(android::sp<android::compositionengine::LayerFE>&, android::compositionengine::Output::CoverageState&)+1692) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #03 pc 0000000000146e60 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::collectVisibleLayers(android::compositionengine::CompositionRefreshArgs const&, android::compositionengine::Output::CoverageState&)+128) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #04 pc 0000000000146d38 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::rebuildLayerStacks(android::compositionengine::CompositionRefreshArgs const&, std::__1::unordered_set<android::sp<android::compositionengine::LayerFE>, android::compositionengine::LayerFESpHash, std::__1::equal_to<android::sp<android::compositionengine::LayerFE> >, std::__1::allocator<android::sp<android::compositionengine::LayerFE> > >&)+340) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #05 pc 0000000000146a3c /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::prepare(android::compositionengine::CompositionRefreshArgs const&, std::__1::unordered_set<android::sp<android::compositionengine::LayerFE>, android::compositionengine::LayerFESpHash, std::__1::equal_to<android::sp<android::compositionengine::LayerFE> >, std::__1::allocator<android::sp<android::compositionengine::LayerFE> > >&)+56) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #06 pc 000000000013eb3c /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::CompositionEngine::present(android::compositionengine::CompositionRefreshArgs&)+116) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #07 pc 0000000000111c08 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageRefresh()+1524) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #08 pc 000000000010ee5c /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageReceived(int, long)+88) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #09 pc 0000000000019b8c /system/lib64/libutils.so (android::Looper::pollInner(int)+372) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #10 pc 00000000000199b0 /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)+112) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #11 pc 00000000000f7850 /system/lib64/libsurfaceflinger.so (android::impl::MessageQueue::waitMessage()+84) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #12 pc 0000000000108594 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::run()+20) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #13 pc 0000000000002394 /system/bin/surfaceflinger (main+844) 05-26 01:57:17.428 2264 2264 D createOutputLayer: #14 pc 000000000008506c /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+108)
- HWC2::Layer设置buffer的流程
//通过Composer::setLayerBuffer调用堆栈,将buffer\_handle\_t信息传递到hwc2的HAL层实现的 onMessageRefresh() mCompositionEngine->present(refreshArgs) output->present(args) //Output.cpp Output::updateAndWriteCompositionState(refreshArgs) layer->writeStateToHWC writeOutputIndependentPerFrameStateToHWC OutputLayer.cpp:471 writeBufferStateToHWC HwcLayer::SetLayerBuffer //drm_hwcomposer
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #00 pc 00000000000b4028 /system/lib64/libsurfaceflinger.so (android::Hwc2::impl::Composer::setLayerBuffer(unsigned long, unsigned long, unsigned int, android::sp<android::GraphicBuffer> const&, int)+96) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #01 pc 00000000001514c8 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::OutputLayer::writeBufferStateToHWC(android::HWC2::Layer*, android::compositionengine::LayerFECompositionState const&)+344) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #02 pc 0000000000150e74 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::OutputLayer::writeOutputIndependentPerFrameStateToHWC(android::HWC2::Layer*, android::compositionengine::LayerFECompositionState const&)+484) OutputLayer.cpp:471 writeBufferStateToHWC 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #03 pc 00000000001500ac /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::OutputLayer::writeStateToHWC(bool)+180) OutputLayer.cpp:342 writeOutputIndependentPerFrameStateToHWC 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #04 pc 00000000001479a4 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::updateAndWriteCompositionState(android::compositionengine::CompositionRefreshArgs const&)+356) Output.cpp:607 layer->writeStateToHWC 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #05 pc 0000000000146b2c /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::present(android::compositionengine::CompositionRefreshArgs const&)+64) Output.cpp:313 updateAndWriteCompositionState(refreshArgs) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #06 pc 000000000013ebe8 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::CompositionEngine::present(android::compositionengine::CompositionRefreshArgs&)+220) CompositionEngine.cpp output->present(args) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #07 pc 0000000000111c4c /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageRefresh()+1524) mCompositionEngine->present(refreshArgs); 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #08 pc 000000000010eea0 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageReceived(int, long)+88) onMessageRefresh() 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #09 pc 0000000000019b8c /system/lib64/libutils.so (android::Looper::pollInner(int)+372) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #10 pc 00000000000199b0 /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)+112) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #11 pc 00000000000f7894 /system/lib64/libsurfaceflinger.so (android::impl::MessageQueue::waitMessage()+84) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #12 pc 00000000001085d8 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::run()+20) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #13 pc 0000000000002394 /system/bin/surfaceflinger (main+844) 05-26 01:57:51.122 2280 2280 D setLayerBuffer: #14 pc 000000000008506c /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+108)
二. drm_hwcomposer普法
drm_hwcomposer作为HWC框架的HAL实现,它是怎么承接HWC的接口,并且实现相关逻辑的呢。这就离不开它的设计逻辑了,分为frontend前端和backend后端处理逻辑。
- frontend 是对外提供调用的接口,,外部使用者呼叫 front end 暴漏出的接口来呼叫某一功能;
- backend 主要是调用内核的实现逻辑,是前端接口功能的内部实现,是真正做事的地方
其中最最重要的就是后端的设计逻辑,分为三种情况
- Backend: 一个后端的实现,注册为"generic",主要是定义了ValidateDisplay方法,这个方法用来设置可见的HwcLayer应该采用什么合成方式
- BackendClient: 一个后端的实现,注册为"client",主要是定义了ValidateDisplay方法,它把所有HwcLayer都设置成立Client合成方式
- BackendManager:后端的管理器,用来根据Device name从已注册的backend列表中选择一个,设置给HwcDisplay;GetBackendByName就是通过Device name来从available_backends_中选择一个匹配的Backend构造函数来构建后端对象。
接下来我们就从代码触发,看看它是如何使用上述的框架实现的!
2.1 drm_hwcomposer源码初探
这块我们只分析其核心实现,对于具体的一些逻辑我们带过!有些具体代码逻辑,臣妾真的是心有余而力不足啊,分析不了啊。路漫漫啊,不知道能不能走到终点! 在分析源码前,我们来看下drm_hwcomposer的目录,如下:
drm_hwcomposer ├── Android.bp //编译脚本 ├── backend //hwcomposer后端,是前端接口功能的内部实现,是真正做事的地方 ├── bufferinfo //对应不同vendor的buffer接口 ├── build_deploy.sh ├── compositor //kms处理送显逻辑代码 ├── drm //drm,各个子模块代码 ├── hwc2_device //对接Android hwc相关源码 ├── include //头文件 ├── MODULE_LICENSE_APACHE2 ├── NOTICE ├── presubmit.sh ├── README.md └── utils
2.2 drm_hwcomposer的HAL模块实现
HAL是个很神秘的东东,经常会看到一些求职网站显示需要招聘会HAL开发的Android工程师,但是绝大部分的Android开发人员只会使用,很少能独立开发一个属于自己的HAL。幸运的是我也是其中的绝大部分,不幸的是我也么有开发过属于自己的HAL实现。
//hwc2_device/hwc2_device.cpp /** * @brief * * @param module * @param name * @param dev * @return int * HookDevOpen,该方法中会去实例化一个Drmhwc2Device对象,其中去创建了一个DrmHwcTwo对象 */ static int HookDevOpen(const struct hw_module_t *module, const char *name, struct hw_device_t **dev) { if (strcmp(name, HWC_HARDWARE_COMPOSER) != 0) { ALOGE("Invalid module name- %s", name); return -EINVAL; } auto ctx = std::make_unique<Drmhwc2Device>();//详见章节5.6 if (!ctx) { ALOGE("Failed to allocate DrmHwcTwo"); return -ENOMEM; } ctx->common.tag = HARDWARE_DEVICE_TAG; ctx->common.version = HWC_DEVICE_API_VERSION_2_0; ctx->common.close = HookDevClose; // NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast) ctx->common.module = (hw_module_t *)module; ctx->getCapabilities = HookDevGetCapabilities; ctx->getFunction = HookDevGetFunction;//核心接口,详见5.5 *dev = &ctx.release()->common; return 0; } static struct hw_module_methods_t hwc2_module_methods = { .open = android::HookDevOpen, }; /** * @brief * HAL标准化实现流程 */ hw_module_t HAL_MODULE_INFO_SYM = {//注册HAL .tag = HARDWARE_MODULE_TAG, .module_api_version = HARDWARE_MODULE_API_VERSION(2, 0), .id = HWC_HARDWARE_MODULE_ID,//hwcomposer .name = "DrmHwcTwo module", .author = "The Android Open Source Project", .methods = &hwc2_module_methods, .dso = nullptr, .reserved = {0}, };
这一块的逻辑比较简单,就是上层hwcomposer服务加载HAL模块的时候,通过套路化的HAL编程实现加载HWC HAL的功能,并且上层调用open时候会初始化一个Drmhwc2Device返回给hwcomposer服务。其调用堆栈如下:
01-01 00:00:18.617 2262 2262 D HWC_DRM : #00 pc 000000000002bfd4 /vendor/lib64/hw/hwcomposer.drm.so (android::HookDevOpen(hw_module_t const*, char const*, hw_device_t**)+80) 01-01 00:00:18.617 2262 2262 D HWC_DRM : #01 pc 0000000000006684 /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (android::hardware::graphics::composer::V2_1::passthrough::HwcLoader::openDeviceWithAdapter(hw_module_t const*, bool*)+376) 01-01 00:00:18.617 2262 2262 D HWC_DRM : #02 pc 000000000000639c /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (android::hardware::graphics::composer::V2_1::passthrough::HwcLoader::createHalWithAdapter(hw_module_t const*)+48) 01-01 00:00:18.617 2262 2262 D HWC_DRM : #03 pc 00000000000062cc /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (android::hardware::graphics::composer::V2_1::passthrough::HwcLoader::load()+164) 01-01 00:00:18.617 2262 2262 D HWC_DRM : #04 pc 0000000000006138 /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (main+240) 01-01 00:00:18.617 2262 2262 D HWC_DRM : #05 pc 000000000008506c /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+108)
其中Drmhwc2Device的层级关系如下:
其代码定义如下:
//hardware/libhardware/include/hardware/hwcomposer2.h typedef struct hwc2_device { /* Must be the first member of this struct, since a pointer to this struct * will be generated by casting from a hw_device_t* */ struct hw_device_t common; void (*getCapabilities)(struct hwc2_device* device, uint32_t* outCount, int32_t* /*hwc2_capability_t*/ outCapabilities); hwc2_function_pointer_t (*getFunction)(struct hwc2_device* device, int32_t /*hwc2_function_descriptor_t*/ descriptor); } hwc2_device_t; //hardware/libhardware/include/hardware/hardware.h typedef struct hw_device_t { tag; /** tag must be initialized to HARDWARE_DEVICE_TAG */ uint32_t version; struct hw_module_t* module; uint64_t reserved[12]; int (*close)(struct hw_device_t* device); } hw_device_t; hwc2_device/hwc2_device.cpp struct Drmhwc2Device : hwc2_device { DrmHwcTwo drmhwctwo; };
这里可以看到hwc2_device在hw_device_t的基础上扩展了,两个函数接口,其中最最核心的就是getFunction,原来在HWC时代,上层调用HAL是直接通过固化的函数硬对接上去的,现在通过getFunction可以进行许多扩展,增强可实用性。
2.3 HookDevGetFunction功能
HookDevGetFunction,我们可以把它理解为是HAL层对上提供的功能函数接口表。这些函数具体可以分为三类:
Device functions:其核心功能函数包括:
- 注册回调事件 registerCallback
- 创建虚拟通路(非显示通路,如录屏)createVirtualDisplay
- 热拔插事件onHotplug
Display functions:其核心功能函数包括:
- 输入layer的管理createLayer / destroyLayer
- 叠加输出buffer设置setClientTarget / setOutputBuffer
- 显示触发present
- 设置vsync使能setVsyncEnabled
Layer functions:其核心功能函数包括:
- 设置层的buffer setBuffer:
- 设置层的属性 setBlendMode/setColor/setDataspace/setDisplayFrame(显示区域)/setPlaneAlpha/setSourceCrop/setZOrder
- 设置层的sidband流 setSidebandStream
- 设置叠加方式setCompositionType:Device表示硬件叠加,Client表示GPU叠加
//hwc2_device/hwc2_device.cpp static hwc2_function_pointer_t HookDevGetFunction(struct hwc2_device * /*dev*/, int32_t descriptor) { auto func = static_cast<HWC2::FunctionDescriptor>(descriptor); switch (func) { // Device functions ... case HWC2::FunctionDescriptor::RegisterCallback://注册回调,热插拔事件就是通过它回调上去的 return ToHook<HWC2_PFN_REGISTER_CALLBACK>( DeviceHook<int32_t, decltype(&DrmHwcTwo::RegisterCallback), &DrmHwcTwo::RegisterCallback, int32_t, hwc2_callback_data_t, hwc2_function_pointer_t>); // Display functions case HWC2::FunctionDescriptor::AcceptDisplayChanges: return ToHook<HWC2_PFN_ACCEPT_DISPLAY_CHANGES>( DisplayHook<decltype(&HwcDisplay::AcceptDisplayChanges), &HwcDisplay::AcceptDisplayChanges>); case HWC2::FunctionDescriptor::CreateLayer: return ToHook<HWC2_PFN_CREATE_LAYER>( DisplayHook<decltype(&HwcDisplay::CreateLayer), &HwcDisplay::CreateLayer, hwc2_layer_t *>); case HWC2::FunctionDescriptor::DestroyLayer: ... // Layer functions case HWC2::FunctionDescriptor::SetCursorPosition: return ToHook<HWC2_PFN_SET_CURSOR_POSITION>( LayerHook<decltype(&HwcLayer::SetCursorPosition), &HwcLayer::SetCursorPosition, int32_t, int32_t>); case HWC2::FunctionDescriptor::SetLayerBlendMode: return ToHook<HWC2_PFN_SET_LAYER_BLEND_MODE>( LayerHook<decltype(&HwcLayer::SetLayerBlendMode), &HwcLayer::SetLayerBlendMode, int32_t>); case HWC2::FunctionDescriptor::SetLayerBuffer: return ToHook<HWC2_PFN_SET_LAYER_BUFFER>( LayerHook<decltype(&HwcLayer::SetLayerBuffer), &HwcLayer::SetLayerBuffer, buffer_handle_t, int32_t>); ... } }
2.4 DrmHwcTwo的构建和初始化
兄弟你为啥叫DrmHwcTwo而不是叫DrmHwc2呢!你到底是李鬼还是李逵,让人傻傻分不清楚啊!让我们看看DrmHwcTwo的构造究竟干了些啥!
//drm-hwcomposer/hwc2_device/DrmHwcTwo.h class DrmHwcTwo : public PipelineToFrontendBindingInterface { public: DrmHwcTwo(); ~DrmHwcTwo() override = default; std::pair<HWC2_PFN_HOTPLUG, hwc2_callback_data_t> hotplug_callback_{}; std::pair<HWC2_PFN_VSYNC, hwc2_callback_data_t> vsync_callback_{}; #if PLATFORM_SDK_VERSION > 29 std::pair<HWC2_PFN_VSYNC_2_4, hwc2_callback_data_t> vsync_2_4_callback_{}; std::pair<HWC2_PFN_VSYNC_PERIOD_TIMING_CHANGED, hwc2_callback_data_t> period_timing_changed_callback_{}; #endif std::pair<HWC2_PFN_REFRESH, hwc2_callback_data_t> refresh_callback_{}; // Device functions HWC2::Error CreateVirtualDisplay(uint32_t width, uint32_t height, int32_t *format, hwc2_display_t *display); HWC2::Error DestroyVirtualDisplay(hwc2_display_t display); void Dump(uint32_t *outSize, char *outBuffer); uint32_t GetMaxVirtualDisplayCount(); HWC2::Error RegisterCallback(int32_t descriptor, hwc2_callback_data_t data, hwc2_function_pointer_t function); auto GetDisplay(hwc2_display_t display_handle) { return displays_.count(display_handle) != 0 ? displays_[display_handle].get() : nullptr; } auto &GetResMan() { return resource_manager_; } void ScheduleHotplugEvent(hwc2_display_t displayid, bool connected) { deferred_hotplug_events_[displayid] = connected; } // PipelineToFrontendBindingInterface bool BindDisplay(DrmDisplayPipeline *pipeline) override; bool UnbindDisplay(DrmDisplayPipeline *pipeline) override; void FinalizeDisplayBinding() override; void SendVsyncEventToClient(hwc2_display_t displayid, int64_t timestamp, uint32_t vsync_period) const; void SendVsyncPeriodTimingChangedEventToClient(hwc2_display_t displayid, int64_t timestamp) const; private: void SendHotplugEventToClient(hwc2_display_t displayid, bool connected); //ResourceManager是个非常重要的核心类,他应该管理着DRM的资源 ResourceManager resource_manager_;// DrmHwcTwo类中的成员 std::map<hwc2_display_t, std::unique_ptr<HwcDisplay>> displays_; std::map<DrmDisplayPipeline *, hwc2_display_t> display_handles_; std::string mDumpString; std::map<hwc2_display_t, bool> deferred_hotplug_events_; std::vector<hwc2_display_t> displays_for_removal_list_; uint32_t last_display_handle_ = kPrimaryDisplay; }; //drm-hwcomposer/hwc2_device/DrmHwcTwo.cpp DrmHwcTwo::DrmHwcTwo() : resource_manager_(this){}; // DrmHwcTwo的构造函数定义 //hwc2_device/hwc2_device.cpp struct Drmhwc2Device : hwc2_device { DrmHwcTwo drmhwctwo; }; auto ctx = std::make_unique<Drmhwc2Device>();
DrmHwcTwo它是如此的潇洒,非常简单就是实例化了一个ResourceManager对象,然后将自己传递给了ResourceManager。
2.5 ResourceManager构造以及初始化流程
这里我们直接上代码,客官请看:
//drm/ResourceManager.cpp ResourceManager::ResourceManager( PipelineToFrontendBindingInterface *p2f_bind_interface) : frontend_interface_(p2f_bind_interface) { //p2f_bind_interface指向DrmHwcTwo对象 if (uevent_listener_.Init() != 0) { ALOGE("Can't initialize event listener"); } }
很简单,就是去实例化一个ResourceManager对象,其构造函数中处理初始化了uevent_listener等成员,也没啥了frontend_interface_指向DrmHwcTwo对象。到这里,是不是读者感觉到一脸懵逼,Resourceanager感觉啥也木有做啊,其实它是个非常重要的核心类,它管理着DRM的资源(对于libdrm编程熟悉的小伙伴,应该对于Resource肯定很熟悉了)。
那这里的ResourceManager::Init啥时候被调用呢!其实是在SurfaceFlinger的初始化过程时,设置callback给HWC,层层传递后就会调用到DrmHwcTwo::RegisterCallback进而调用到了 resource_manager_.Init();
//hwc2_device/hwc2_device.cpp case HWC2::FunctionDescriptor::RegisterCallback: return ToHook<HWC2_PFN_REGISTER_CALLBACK>( DeviceHook<int32_t, decltype(&DrmHwcTwo::RegisterCallback), &DrmHwcTwo::RegisterCallback, int32_t, hwc2_callback_data_t, hwc2_function_pointer_t>); //hwc2_device/DrmHwcTwo.cpp HWC2::Error DrmHwcTwo::RegisterCallback(int32_t descriptor, hwc2_callback_data_t data, hwc2_function_pointer_t function) { switch (static_cast<HWC2::Callback>(descriptor)) { case HWC2::Callback::Hotplug: { hotplug_callback_ = std::make_pair(HWC2_PFN_HOTPLUG(function), data); if (function != nullptr) { // ResourceManager resource_manager_; resource_manager_.Init(); } else { resource_manager_.DeInit(); /* Headless display may still be here, remove it */ displays_.erase(kPrimaryDisplay); } break; } case HWC2::Callback::Refresh: { refresh_callback_ = std::make_pair(HWC2_PFN_REFRESH(function), data); break; } case HWC2::Callback::Vsync: { vsync_callback_ = std::make_pair(HWC2_PFN_VSYNC(function), data); break; } #if PLATFORM_SDK_VERSION > 29 case HWC2::Callback::Vsync_2_4: { vsync_2_4_callback_ = std::make_pair(HWC2_PFN_VSYNC_2_4(function), data); break; } case HWC2::Callback::VsyncPeriodTimingChanged: { period_timing_changed_callback_ = std:: make_pair(HWC2_PFN_VSYNC_PERIOD_TIMING_CHANGED(function), data); break; } #endif default: break; } return HWC2::Error::None; }
我们看下ResourceManager::Init实现:
ResourceManager 初始化到底初始化了什么呢?
[drm-hwcomposer/drm/ResourceManager.cpp] void ResourceManager::Init() { if (initialized_) { ALOGE("Already initialized"); // 已经初始化了,避免重复初始化 return; } char path_pattern[PROPERTY_VALUE_MAX]; // Could be a valid path or it can have at the end of it the wildcard % // which means that it will try open all devices until an error is met. int path_len = property_get("vendor.hwc.drm.device", path_pattern, "/dev/dri/card%"); if (path_pattern[path_len - 1] != '%') { AddDrmDevice(std::string(path_pattern));//详见章节2.6 } else { path_pattern[path_len - 1] = '\0'; for (int idx = 0;; ++idx) { std::ostringstream path; path << path_pattern << idx; struct stat buf {}; if (stat(path.str().c_str(), &buf) != 0) break; if (DrmDevice::IsKMSDev(path.str().c_str())) { AddDrmDevice(path.str()); } } } /**上面一大坨代码,简单理解就是找到DRM的设备节点,然后打开它,在我的设备上是/dev/dri/card0 */ /** AddDrmDevice中去初始化DRM各种各样的资源 **/ char scale_with_gpu[PROPERTY_VALUE_MAX]; property_get("vendor.hwc.drm.scale_with_gpu", scale_with_gpu, "0"); scale_with_gpu_ = bool(strncmp(scale_with_gpu, "0", 1));// 使用GPU缩放的标志 if (BufferInfoGetter::GetInstance() == nullptr) { ALOGE("Failed to initialize BufferInfoGetter"); // 初始化BufferInfoGetter,用于从Gralloc Mapper中获取buffer的属性信息 return; } uevent_listener_.RegisterHotplugHandler([this] {// 注册热插拔的回调 const std::lock_guard<std::mutex> lock(GetMainLock()); UpdateFrontendDisplays(); }); //详见章节2.7 UpdateFrontendDisplays();//这里会Send Hotplug Event To Client,SF会收到一次onComposerHalHotplug // attached_pipelines_的初始化、更新 initialized_ = true; // 设置标记,表明已经初始化过了 }
重点来看下AddDrmDevice:
AddDrmDevice
[drm-hwcomposer/drm/ResourceManager.cpp] int ResourceManager::AddDrmDevice(const std::string &path) { auto drm = std::make_unique<DrmDevice>();//创建DrmDevice对象 int ret = drm->Init(path.c_str());//初始化DrmDevice,path一般就是/dev/dri/card0 drms_.push_back(std::move(drm));//保存到drms_中,便于后续的DeleteDrmDevices删除 return ret; }
2.6 DrmDevice的实现
一个重要的角色登场DrmDevice,我们可以理解它是对DRM设备进行抽象描述的一个类,用来后续的送显示,如下是其定义:
这里我们先看DrmDevice的实现,DrmDevice的构造函数中创建一个 DrmFbImporter 对象
[drm-hwcomposer/drm/DrmDevice.cpp] DrmDevice::DrmDevice() { drm_fb_importer_ = std::make_unique<DrmFbImporter>(*this); }
这里的DrmFbImporter后面会用到,用于后续DRM/KMS显示流程!
接下来我们继续往下看,看看DrmDevice::Init的实现逻辑,它主要完成了完成了获取DRM资源的初始化,CRTC、Encoder、Connector、Plane这些资源都获取到了!完美抽象出下面的框图!
//drm/DrmDevice.cpp auto DrmDevice::Init(const char *path) -> int { /* TODO: Use drmOpenControl here instead */ fd_ = UniqueFd(open(path, O_RDWR | O_CLOEXEC));//打开设备,一般是/dev/dri/card0 if (!fd_) {//异常处理 // NOLINTNEXTLINE(concurrency-mt-unsafe): Fixme ALOGE("Failed to open dri %s: %s", path, strerror(errno)); return -ENODEV; } //通用设置 设置DRM_CLIENT_CAP_UNIVERSAL_PLANES,获取所有支持的Plane资源 int ret = drmSetClientCap(GetFd(), DRM_CLIENT_CAP_UNIVERSAL_PLANES, 1); if (ret != 0) { ALOGE("Failed to set universal plane cap %d", ret); return ret; } //通用设置 设置DRM_CLIENT_CAP_ATOMIC,告知DRM驱动该应用程序支持Atomic操作 ret = drmSetClientCap(GetFd(), DRM_CLIENT_CAP_ATOMIC, 1); if (ret != 0) { ALOGE("Failed to set atomic cap %d", ret); return ret; } #ifdef DRM_CLIENT_CAP_WRITEBACK_CONNECTORS // 设置开启 writeback ret = drmSetClientCap(GetFd(), DRM_CLIENT_CAP_WRITEBACK_CONNECTORS, 1); if (ret != 0) { ALOGI("Failed to set writeback cap %d", ret); } #endif uint64_t cap_value = 0; if (drmGetCap(GetFd(), DRM_CAP_ADDFB2_MODIFIERS, &cap_value) != 0) { ALOGW("drmGetCap failed. Fallback to no modifier support."); cap_value = 0; } HasAddFb2ModifiersSupport_ = cap_value != 0;//是否支持Add Fb2 Modifiers drmSetMaster(GetFd()); if (drmIsMaster(GetFd()) == 0) { ALOGE("DRM/KMS master access required"); return -EACCES; } //获取DrmModeRes auto res = MakeDrmModeResUnique(GetFd()); if (!res) { ALOGE("Failed to get DrmDevice resources"); return -ENODEV; } // 最小和最大的分辨率 min_resolution_ = std::pair<uint32_t, uint32_t>(res->min_width, res->min_height); max_resolution_ = std::pair<uint32_t, uint32_t>(res->max_width, res->max_height); // 获取所有的CRTC,创建DrmCrtc对象,并加入crtcs_这个vector<unique_ptr<DrmCrtc>> for (int i = 0; i < res->count_crtcs; ++i) { // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic) auto crtc = DrmCrtc::CreateInstance(*this, res->crtcs[i], i); if (crtc) { crtcs_.emplace_back(std::move(crtc)); } } //获取Encoder 建DrmEncoder对象,并加入encoders_这个vector<unique_ptr<DrmEncoder>> for (int i = 0; i < res->count_encoders; ++i) { // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic) auto enc = DrmEncoder::CreateInstance(*this, res->encoders[i], i); if (enc) { encoders_.emplace_back(std::move(enc)); } } // 获取所有的Connector,创建DrmConnector对象,并加入connectors_这个vector<unique_ptr<DrmConnector>> // 或放入writeback_connectors_这个vector中 for (int i = 0; i < res->count_connectors; ++i) { // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic) auto conn = DrmConnector::CreateInstance(*this, res->connectors[i], i); if (!conn) { continue; } if (conn->IsWriteback()) { writeback_connectors_.emplace_back(std::move(conn)); } else { connectors_.emplace_back(std::move(conn)); } } // 获取drmModePlaneRes auto plane_res = MakeDrmModePlaneResUnique(GetFd()); if (!plane_res) { ALOGE("Failed to get plane resources"); return -ENOENT; } // 获取所有的Plane,创建DrmPlane对象,并加入planes_这个vector<unique_ptr<DrmPlane>> for (uint32_t i = 0; i < plane_res->count_planes; ++i) { // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic) auto plane = DrmPlane::CreateInstance(*this, plane_res->planes[i]); if (plane) { planes_.emplace_back(std::move(plane)); } } return 0; }
2.7 UpdateFrontendDisplays
让我们梦回大唐,错了让我们回到ResourceManager::Init()中,在最后的逻辑中调用了UpdateFrontendDisplays方法.
//drm/ResourceManager.cpp auto ResourceManager::GetOrderedConnectors() -> std::vector<DrmConnector *> { /* Put internal displays first then external to * ensure Internal will take Primary slot */ std::vector<DrmConnector *> ordered_connectors; for (auto &drm : drms_) { for (const auto &conn : drm->GetConnectors()) { // 判断当前连接器是否为内部连接器 // 如果是内部连接器,则将其添加到ordered_connectors中 if (conn->IsInternal()) { ordered_connectors.emplace_back(conn.get()); } } } for (auto &drm : drms_) { for (const auto &conn : drm->GetConnectors()) { // 判断当前连接器是否为外部连接器 // 如果是外部连接器,则将其添加到ordered_connectors中 if (conn->IsExternal()) { ordered_connectors.emplace_back(conn.get()); } } } return ordered_connectors; } void ResourceManager::UpdateFrontendDisplays() { //获取所有的连接器,并按照连接器的优先级进行排序 internal displays放前面,external放后面的排序connectors auto ordered_connectors = GetOrderedConnectors(); for (auto *conn : ordered_connectors) { conn->UpdateModes(); bool connected = conn->IsConnected(); // std::map<DrmConnector *, std::unique_ptr<DrmDisplayPipeline>>attached_pipelines_; bool attached = attached_pipelines_.count(conn) != 0;// 判断map中是否存在key为conn的元素 if (connected != attached) { ALOGI("%s connector %s", connected ? "Attaching" : "Detaching", conn->GetName().c_str()); if (connected) {// connected==true and attached == false, // 说明当前连接器需要被绑定到frontend上 // 创建一个DrmDisplayPipeline对象,并将其绑定到frontend_interface_上 // 然后将该对象添加到attached_pipelines_中 // 最后调用frontend_interface_的BindDisplay方法将该对象绑定到frontend上 auto pipeline = DrmDisplayPipeline::CreatePipeline(*conn); //frontend_interface_指向DrmHwcTwo对象 frontend_interface_->BindDisplay(pipeline.get()); attached_pipelines_[conn] = std::move(pipeline); } else {// connected==false and attached == true,解除 // 当前连接器与frontend的绑定关系 // 首先从attached_pipelines_中移除该连接器 // 然后调用frontend_interface_的UnbindDisplay方法解除绑定 auto &pipeline = attached_pipelines_[conn]; frontend_interface_->UnbindDisplay(pipeline.get()); attached_pipelines_.erase(conn); } } } // 最后调用frontend_interface_的FinalizeDisplayBinding方法完成绑定操作 frontend_interface_->FinalizeDisplayBinding(); }
我们接着继续看下DrmDisplayPipeline::CreatePipeline是如何构建DrmDisplayPipeline的,以及它DrmDisplayPipeline的定义!
//drm/DrmDisplayPipeline.h /** * @brief * 主要用于封装drm相关的组件,包括plane、encoder、crtc等 * 1. 创建一个DrmDisplayPipeline对象 * 2. 获取可用的planes * 3. 返回一个DrmDisplayPipeline对象 */ struct DrmDisplayPipeline { static auto CreatePipeline(DrmConnector &connector) -> std::unique_ptr<DrmDisplayPipeline>; auto GetUsablePlanes() -> std::vector<std::shared_ptr<BindingOwner<DrmPlane>>>; DrmDevice *device; std::shared_ptr<BindingOwner<DrmConnector>> connector; std::shared_ptr<BindingOwner<DrmEncoder>> encoder; std::shared_ptr<BindingOwner<DrmCrtc>> crtc; std::shared_ptr<BindingOwner<DrmPlane>> primary_plane; std::unique_ptr<DrmAtomicStateManager> atomic_state_manager; }; //drm/DrmDisplayPipeline.cpp DrmDisplayPipeline::CreatePipeline TryCreatePipelineUsingEncoder TryCreatePipeline static auto TryCreatePipeline(DrmDevice &dev, DrmConnector &connector, DrmEncoder &enc, DrmCrtc &crtc) -> std::unique_ptr<DrmDisplayPipeline> { /* Check if resources are available */ auto pipe = std::make_unique<DrmDisplayPipeline>(); pipe->device = &dev; pipe->connector = connector.BindPipeline(pipe.get()); pipe->encoder = enc.BindPipeline(pipe.get()); pipe->crtc = crtc.BindPipeline(pipe.get()); if (!pipe->connector || !pipe->encoder || !pipe->crtc) { return {}; }
这里的DrmDisplayPipeline,就是drm下kms显示通路的一个管道,将crtc,encoder,connector组合起来的一个类!
2.8 DrmHwcTwo如何处理HwcDisplay的构建
我们接着接续看下DrmHwcTwo是如何继续处理HwcDisplay,这其中牵涉到几个重要的成员和方法:
//hwc2_device/DrmHwcTwo.h inline constexpr uint32_t kPrimaryDisplay = 0; class HwcDisplay { uint32_t last_display_handle_ = kPrimaryDisplay; //typedef uint64_t hwc2_display_t; //typedef uint64_t hwc2_display_t; std::map<hwc2_display_t, std::unique_ptr<HwcDisplay>> displays_; std::map<DrmDisplayPipeline *, hwc2_display_t> display_handles_; // PipelineToFrontendBindingInterface //创建HwcDisplay bool BindDisplay(DrmDisplayPipeline *pipeline) override; //销毁HwcDisplay bool UnbindDisplay(DrmDisplayPipeline *pipeline) override; //完成显示绑定,发送display插拔事件给SurfaceFlinger,告知SurfaceFlinger当前显示设备的状态 void FinalizeDisplayBinding() override; }
我们先看看BindDisplay和UnbindDisplay的实现!
//hwc2_device/DrmHwcTwo.cpp bool DrmHwcTwo::BindDisplay(DrmDisplayPipeline *pipeline) { if (display_handles_.count(pipeline) != 0) { ALOGE("%s, pipeline is already used by another display, FIXME!!!: %p", __func__, pipeline); return false; } uint32_t disp_handle = kPrimaryDisplay; if (displays_.count(kPrimaryDisplay) != 0 && !displays_[kPrimaryDisplay]->IsInHeadlessMode()) { disp_handle = ++last_display_handle_; } if (displays_.count(disp_handle) == 0) { /* Create a new HwcDisplay */ auto disp = std::make_unique<HwcDisplay>(disp_handle, HWC2::DisplayType::Physical, this); //填充displays_容器 displays_[disp_handle] = std::move(disp); } ALOGI("Attaching pipeline '%s' to the display #%d%s", pipeline->connector->Get()->GetName().c_str(), (int)disp_handle, disp_handle == kPrimaryDisplay ? " (Primary)" : ""); //给HwcDisplay设置pipeline displays_[disp_handle]->SetPipeline(pipeline); //填充display_handles_容器 display_handles_[pipeline] = disp_handle; return true; } bool DrmHwcTwo::UnbindDisplay(DrmDisplayPipeline *pipeline) { if (display_handles_.count(pipeline) == 0) { ALOGE("%s, can't find the display, pipeline: %p", __func__, pipeline); return false; } auto handle = display_handles_[pipeline]; display_handles_.erase(pipeline); ALOGI("Detaching the pipeline '%s' from the display #%i%s", pipeline->connector->Get()->GetName().c_str(), (int)handle, handle == kPrimaryDisplay ? " (Primary)" : ""); if (displays_.count(handle) == 0) { ALOGE("%s, can't find the display, handle: %" PRIu64, __func__, handle); return false; } displays_[handle]->SetPipeline(nullptr); /* We must defer display disposal and removal, since it may still have pending * HWC_API calls scheduled and waiting until ueventlistener thread releases * main lock, otherwise transaction may fail and SF may crash */ if (handle != kPrimaryDisplay) { displays_for_removal_list_.emplace_back(handle); } return true; }
上述的主要逻辑就是通过前面构建出来的DrmDisplayPipeline和新构建的HwcDisplay填充displays_和display_handles_容器。这里我们接着看下HwcDisplay的实现!
//hwc2_device/HwcDisplay.h /** * @brief * 这里的HwcDisplay是HWC2::Display在HAL层的实现, * 它负责管理一个Display的配置和状态, * 包括创建和销毁Layer, * 以及处理Display的配置和状态变化。 * * 它还负责处理Display的HWC Hooks, * 例如AcceptDisplayChanges、CreateLayer、DestroyLayer等。 * * 它还负责处理Display的VSync事件, * 例如处理VSync事件、发送VSync事件等。 * * 它还负责处理Display的HWC2::Error, * 例如处理HWC2::Error等。 * */ class HwcDisplay { HwcDisplay(hwc2_display_t handle, HWC2::DisplayType type, DrmHwcTwo *hwc2); /* SetPipeline should be carefully used only by DrmHwcTwo hotplug handlers */ void SetPipeline(DrmDisplayPipeline *pipeline); HWC2::Error CreateComposition(AtomicCommitArgs &a_args); std::vector<HwcLayer *> GetOrderLayersByZPos(); // HWC Hooks HWC2::Error AcceptDisplayChanges(); HWC2::Error CreateLayer(hwc2_layer_t *layer); const Backend *backend() const; void set_backend(std::unique_ptr<Backend> backend); }
这里要怎么理解这个HwcDisplay呢?这里的HwcDisplay是HWC2::Display在HAL层的实现,它的核心功能主要是:
- 它负责管理一个Display的配置和状态,包括创建和销毁Layer,以及处理Display的配置和状态变化。
- 它还负责处理Display的HWC Hooks,例如AcceptDisplayChanges、CreateLayer、DestroyLayer等。
- 它还负责处理Display的VSync事件,例如处理VSync事件、发送VSync事件等。
- 它还负责处理Display的HWC2::Error,例如处理HWC2::Error等。
我们接着继续看下HwcDisplay的构造,比较简单:
HwcDisplay::HwcDisplay(hwc2_display_t handle, HWC2::DisplayType type, DrmHwcTwo *hwc2) : hwc2_(hwc2),//关联的DrmHwcTwo对象 handle_(handle),//typedef uint64_t hwc2_display_t; handle本质就是一个uint64_t整数值 type_(type),// Physical 物理屏幕 color_transform_hint_(HAL_COLOR_TRANSFORM_IDENTITY) { ... }
接着继续来看下HwcDisplay::SetPipeline
void HwcDisplay::SetPipeline(DrmDisplayPipeline *pipeline) { pipeline_ = pipeline; if (pipeline != nullptr) {//会进入这个分支 ChosePreferredConfig(); Init();//调用HwcDisplay::Init()逻辑 hwc2_->ScheduleHotplugEvent(handle_, /*connected = */ true); } else { ... } } HWC2::Error HwcDisplay::Init() { if (!IsInHeadlessMode()) { //通过后端管理为HwcDisplay设置后端,这个后端是干什么的呢 ret = BackendManager::GetInstance().SetBackendForDisplay(this); if (ret) { ALOGE("Failed to set backend for d=%d %d\n", int(handle_), ret); return HWC2::Error::BadDisplay; } } }
这里又是后端管理BackendManager,又是后端Backend!要怎么理解呢?
既然有了backend,那么肯定有frontend,那么谁是backend ,谁是frontend? 扮演的角色功能分别是什么?
初步看起来貌似是:
- frontend 对外提供调用的接口,外部使用者呼叫 front end 暴漏出的接口来呼叫某一功能;
- backend 内部的实现逻辑,是前端接口功能的内部实现,是真正做事的地方;
太多了,太多了。完全放在一篇里面不够。今天先这样了,后续drm_hwcomposer另起一篇完成余下的相关分析!