python调用智谱ai 大模型的完整步骤 (国内的 AI 大模型 对话)

avatar
作者
猴君
阅读量:0

        要使用Python调用智谱AI的API进行异步调用,您需要遵循以下步骤:
        1. **获取API密钥**:
   - 您需要从智谱AI平台获取一个API密钥(API Key),这个密钥将用于所有API请求的身份验证。
        2. **安装Python SDK**:
   - 如果您还没有安装Python SDK,请使用pip命令安装最新版本的SDK。

   pip install zhipuai

   - 如果您已经安装了旧版本的SDK,请使用以下命令更新到最新版本:

   pip install --upgrade zhipuai

        3. **编写代码**:
   - 使用Python编写代码以调用智谱AI的API。以下是完整的Python代码示例,展示了如何使用异步调用方式:

from zhipuai import ZhipuAI # 替换为您的API密钥 api_key = "您的API密钥" # 创建ZhipuAI客户端实例 client = ZhipuAI(api_key=api_key) # 设置模型的名称 model = "glm-4" # 创建一个对话消息列表,表示用户和助手的交互 messages = [     {"role": "user", "content": "可否谈谈人工智能大模型的市场机遇,以及如何利用这个机遇"} ] # 发起API请求 # 使用异步调用方法 async_response = client.chat.completions.create_async(     model=model,  # 指定使用的模型     messages=messages  # 传入对话消息列表 ) # 异步调用返回一个任务ID task_id = async_response.task_id # 等待异步任务完成 response = client.chat.completions.wait(task_id) # 打印API调用结果 print(response.choices[0].message)



        4. **处理响应**:
   - 代码中的`response.choices[0].message`将返回API调用结果中的第一条选择的消息内容。
   - 您可以根据需要处理这些内容,例如将其存储、展示或进一步处理。返回截图如下:

dd857c99487c4220b5d96f0b625819f5.png


        5. **错误处理**:
   - 在调用API时,可能会遇到各种错误,例如认证失败、请求超时等。
   - 您应该在代码中添加错误处理逻辑,以便在出现问题时能够妥善处理。
        6. **异步调用**:
   - 如果您的应用场景需要异步处理API调用,您可以使用`client.chat.completions.create_async`方法。
   - 异步调用会返回一个任务ID,您可以通过该ID来轮询任务的完成情况或等待其完成。
        7. **日志记录**:
   - 为了调试和监控API调用,建议记录所有API请求和响应的详细信息。
   - 您可以在代码中添加日志记录功能,记录请求的URL、参数、响应的时间和内容等信息。
        8. **性能调优**:
   - 如果您的应用需要频繁调用API,考虑对代码进行性能调优,例如使用缓存、批量处理请求等。
        9. **遵守法律法规**:
   - 在使用智谱AI的API时,确保遵守所有适用的法律法规,并尊重用户的隐私和数据保护要求。
        10. **文档和社区支持**:
    - 查阅智谱AI的官方文档,了解API的详细信息和最佳实践。
    - 加入智谱AI的开发者社区,获取技术支持和交流经验。
        通过以上步骤,您可以开始使用智谱AI的API来创建和集成智能体功能,为您的应用提供自然语言处理和对话管理的能力。

 

    广告一刻

    为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!