【论文笔记】动态蛇卷积(Dynamic Snake Convolution)

avatar
作者
猴君
阅读量:0

精确分割拓扑管状结构例如血管和道路,对医疗各个领域至关重要,可确保下游任务的准确性和效率。然而许多因素使分割任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。针对这个问题,作者提出了动态蛇卷积,该结构在管状分割任务上获得了极好的性能。

论文:Dynamic Snake Convolution based on Topological Geometric Constraints for Tubular Structure Segmentation

中文论文:拓扑几何约束管状结构分割的动态蛇卷积

代码:https://github.com/yaoleiqi/dscnet

一、适用场景

管状目标分割的特点是细长且复杂,标准卷积、空洞卷积无法更具目标特征调整关注区域,可变形卷积可以更具特征自适应学习感兴趣区域,但是对于管状目标,可变形卷积无法限制关注区域的连通性,而动态蛇卷积限制了关注区域的连通性,是的其更适合管状场景。

二、动态蛇卷积

对于一个标准3x3的2D卷积核K,其表示为:

为了赋予卷积核更多灵活性,使其能够聚焦于目标 的复杂几何特征,受到可变形卷积的启发,引入了变形偏 移 ∆。然而,如果模型被完全自由地学习变形偏移,感知场往往会偏离目标,特别是在处理细长管状结构的情 况下。因此,作者采用了一个迭代策略(下图),依次选 择每个要处理的目标的下一个位置进行观察,从而确保关注的连续性,不会由于大的变形偏移而将感知范围扩 散得太远。

在动态蛇形卷积中,作者将标准卷积核在 x 轴和 y 轴方向都进行了直线化。考虑一个大小为 9 的卷积 核,以 x 轴方向为例,K 中每个网格的具体位置表示 为:Ki±c = (xi±c, yi±c),其中 c = 0, 1, 2, 3, 4 表示距离 中心网格的水平距离。卷积核 K 中每个网格位置 Ki±c 的选择是一个累积过程。从中心位置 Ki 开始,远离中 心网格的位置取决于前一个网格的位置:Ki+1 相对于 Ki 增加了偏移量 ∆ = {δ|δ ∈ [−1, 1]}。因此,偏移量 需要进行累加 Σ,从而确保卷积核符合线性形态结构。 上图中 x 轴方向的变化为:

y轴方向的变化为:

由于偏移量 ∆ 通常是小数,然而坐标通常是整数 形式,因此采用双线性插值,表示为:

其中,K 表示方程 2和方程 3的小数位置,K′ 列 举所有整数空间位置,B 是双线性插值核,可以分解为 两个一维核,即:

再给个整体图:

三、代码

蛇卷积的代码如下:

# -*- coding: utf-8 -*- import os import torch from torch import nn import einops   """Dynamic Snake Convolution Module"""   class DSConv_pro(nn.Module):     def __init__(         self,         in_channels: int = 1,         out_channels: int = 1,         kernel_size: int = 9,         extend_scope: float = 1.0,         morph: int = 0,         if_offset: bool = True,         device: str | torch.device = "cuda",     ):         """         A Dynamic Snake Convolution Implementation          Based on:              TODO          Args:             in_ch: number of input channels. Defaults to 1.             out_ch: number of output channels. Defaults to 1.             kernel_size: the size of kernel. Defaults to 9.             extend_scope: the range to expand. Defaults to 1 for this method.             morph: the morphology of the convolution kernel is mainly divided into two types along the x-axis (0) and the y-axis (1) (see the paper for details).             if_offset: whether deformation is required,  if it is False, it is the standard convolution kernel. Defaults to True.          """          super().__init__()          if morph not in (0, 1):             raise ValueError("morph should be 0 or 1.")          self.kernel_size = kernel_size         self.extend_scope = extend_scope         self.morph = morph         self.if_offset = if_offset         self.device = torch.device(device)         self.to(device)          # self.bn = nn.BatchNorm2d(2 * kernel_size)         self.gn_offset = nn.GroupNorm(kernel_size, 2 * kernel_size)         self.gn = nn.GroupNorm(out_channels // 4, out_channels)         self.relu = nn.ReLU(inplace=True)         self.tanh = nn.Tanh()          self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size, 3, padding=1)          self.dsc_conv_x = nn.Conv2d(             in_channels,             out_channels,             kernel_size=(kernel_size, 1),             stride=(kernel_size, 1),             padding=0,         )         self.dsc_conv_y = nn.Conv2d(             in_channels,             out_channels,             kernel_size=(1, kernel_size),             stride=(1, kernel_size),             padding=0,         )      def forward(self, input: torch.Tensor):         # Predict offset map between [-1, 1]         offset = self.offset_conv(input)         # offset = self.bn(offset)         offset = self.gn_offset(offset)         offset = self.tanh(offset)          # Run deformative conv         y_coordinate_map, x_coordinate_map = get_coordinate_map_2D(             offset=offset,             morph=self.morph,             extend_scope=self.extend_scope,             device=self.device,         )         deformed_feature = get_interpolated_feature(             input,             y_coordinate_map,             x_coordinate_map,         )          if self.morph == 0:             output = self.dsc_conv_x(deformed_feature)         elif self.morph == 1:             output = self.dsc_conv_y(deformed_feature)          # Groupnorm & ReLU         output = self.gn(output)         output = self.relu(output)          return output   def get_coordinate_map_2D(     offset: torch.Tensor,     morph: int,     extend_scope: float = 1.0,     device: str | torch.device = "cuda", ):     """Computing 2D coordinate map of DSCNet based on: TODO      Args:         offset: offset predict by network with shape [B, 2*K, W, H]. Here K refers to kernel size.         morph: the morphology of the convolution kernel is mainly divided into two types along the x-axis (0) and the y-axis (1) (see the paper for details).         extend_scope: the range to expand. Defaults to 1 for this method.         device: location of data. Defaults to 'cuda'.      Return:         y_coordinate_map: coordinate map along y-axis with shape [B, K_H * H, K_W * W]         x_coordinate_map: coordinate map along x-axis with shape [B, K_H * H, K_W * W]     """      if morph not in (0, 1):         raise ValueError("morph should be 0 or 1.")      batch_size, _, width, height = offset.shape     kernel_size = offset.shape[1] // 2     center = kernel_size // 2     device = torch.device(device)      y_offset_, x_offset_ = torch.split(offset, kernel_size, dim=1)      y_center_ = torch.arange(0, width, dtype=torch.float32, device=device)     y_center_ = einops.repeat(y_center_, "w -> k w h", k=kernel_size, h=height)      x_center_ = torch.arange(0, height, dtype=torch.float32, device=device)     x_center_ = einops.repeat(x_center_, "h -> k w h", k=kernel_size, w=width)      if morph == 0:         """         Initialize the kernel and flatten the kernel             y: only need 0             x: -num_points//2 ~ num_points//2 (Determined by the kernel size)         """         y_spread_ = torch.zeros([kernel_size], device=device)         x_spread_ = torch.linspace(-center, center, kernel_size, device=device)          y_grid_ = einops.repeat(y_spread_, "k -> k w h", w=width, h=height)         x_grid_ = einops.repeat(x_spread_, "k -> k w h", w=width, h=height)          y_new_ = y_center_ + y_grid_         x_new_ = x_center_ + x_grid_          y_new_ = einops.repeat(y_new_, "k w h -> b k w h", b=batch_size)         x_new_ = einops.repeat(x_new_, "k w h -> b k w h", b=batch_size)          y_offset_ = einops.rearrange(y_offset_, "b k w h -> k b w h")         y_offset_new_ = y_offset_.detach().clone()          # The center position remains unchanged and the rest of the positions begin to swing         # This part is quite simple. The main idea is that "offset is an iterative process"          y_offset_new_[center] = 0          for index in range(1, center + 1):             y_offset_new_[center + index] = (                 y_offset_new_[center + index - 1] + y_offset_[center + index]             )             y_offset_new_[center - index] = (                 y_offset_new_[center - index + 1] + y_offset_[center - index]             )          y_offset_new_ = einops.rearrange(y_offset_new_, "k b w h -> b k w h")          y_new_ = y_new_.add(y_offset_new_.mul(extend_scope))          y_coordinate_map = einops.rearrange(y_new_, "b k w h -> b (w k) h")         x_coordinate_map = einops.rearrange(x_new_, "b k w h -> b (w k) h")      elif morph == 1:         """         Initialize the kernel and flatten the kernel             y: -num_points//2 ~ num_points//2 (Determined by the kernel size)             x: only need 0         """         y_spread_ = torch.linspace(-center, center, kernel_size, device=device)         x_spread_ = torch.zeros([kernel_size], device=device)          y_grid_ = einops.repeat(y_spread_, "k -> k w h", w=width, h=height)         x_grid_ = einops.repeat(x_spread_, "k -> k w h", w=width, h=height)          y_new_ = y_center_ + y_grid_         x_new_ = x_center_ + x_grid_          y_new_ = einops.repeat(y_new_, "k w h -> b k w h", b=batch_size)         x_new_ = einops.repeat(x_new_, "k w h -> b k w h", b=batch_size)          x_offset_ = einops.rearrange(x_offset_, "b k w h -> k b w h")         x_offset_new_ = x_offset_.detach().clone()          # The center position remains unchanged and the rest of the positions begin to swing         # This part is quite simple. The main idea is that "offset is an iterative process"          x_offset_new_[center] = 0          for index in range(1, center + 1):             x_offset_new_[center + index] = (                 x_offset_new_[center + index - 1] + x_offset_[center + index]             )             x_offset_new_[center - index] = (                 x_offset_new_[center - index + 1] + x_offset_[center - index]             )          x_offset_new_ = einops.rearrange(x_offset_new_, "k b w h -> b k w h")          x_new_ = x_new_.add(x_offset_new_.mul(extend_scope))          y_coordinate_map = einops.rearrange(y_new_, "b k w h -> b w (h k)")         x_coordinate_map = einops.rearrange(x_new_, "b k w h -> b w (h k)")      return y_coordinate_map, x_coordinate_map   def get_interpolated_feature(     input_feature: torch.Tensor,     y_coordinate_map: torch.Tensor,     x_coordinate_map: torch.Tensor,     interpolate_mode: str = "bilinear", ):     """From coordinate map interpolate feature of DSCNet based on: TODO      Args:         input_feature: feature that to be interpolated with shape [B, C, H, W]         y_coordinate_map: coordinate map along y-axis with shape [B, K_H * H, K_W * W]         x_coordinate_map: coordinate map along x-axis with shape [B, K_H * H, K_W * W]         interpolate_mode: the arg 'mode' of nn.functional.grid_sample, can be 'bilinear' or 'bicubic' . Defaults to 'bilinear'.      Return:         interpolated_feature: interpolated feature with shape [B, C, K_H * H, K_W * W]     """      if interpolate_mode not in ("bilinear", "bicubic"):         raise ValueError("interpolate_mode should be 'bilinear' or 'bicubic'.")      y_max = input_feature.shape[-2] - 1     x_max = input_feature.shape[-1] - 1      y_coordinate_map_ = _coordinate_map_scaling(y_coordinate_map, origin=[0, y_max])     x_coordinate_map_ = _coordinate_map_scaling(x_coordinate_map, origin=[0, x_max])      y_coordinate_map_ = torch.unsqueeze(y_coordinate_map_, dim=-1)     x_coordinate_map_ = torch.unsqueeze(x_coordinate_map_, dim=-1)      # Note here grid with shape [B, H, W, 2]     # Where [:, :, :, 2] refers to [x ,y]     grid = torch.cat([x_coordinate_map_, y_coordinate_map_], dim=-1)      interpolated_feature = nn.functional.grid_sample(         input=input_feature,         grid=grid,         mode=interpolate_mode,         padding_mode="zeros",         align_corners=True,     )      return interpolated_feature   def _coordinate_map_scaling(     coordinate_map: torch.Tensor,     origin: list,     target: list = [-1, 1], ):     """Map the value of coordinate_map from origin=[min, max] to target=[a,b] for DSCNet based on: TODO      Args:         coordinate_map: the coordinate map to be scaled         origin: original value range of coordinate map, e.g. [coordinate_map.min(), coordinate_map.max()]         target: target value range of coordinate map,Defaults to [-1, 1]      Return:         coordinate_map_scaled: the coordinate map after scaling     """     min, max = origin     a, b = target      coordinate_map_scaled = torch.clamp(coordinate_map, min, max)      scale_factor = (b - a) / (max - min)     coordinate_map_scaled = a + scale_factor * (coordinate_map_scaled - min)      return coordinate_map_scaled

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!