阅读量:0
参考文献 代码随想录
一、斐波那契数
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
class Solution(object): def fib(self, n): """ :type n: int :rtype: int """ if n == 0 or n == 1: return n # 动态规划5部曲 dp = [0, 1] for i in range(2, n + 1): dp.append(dp[i - 2] + dp[i - 1]) return dp[n]
二、爬楼梯
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
class Solution(object): def climbStairs(self, n): """ :type n: int :rtype: int """ dp =[0, 1, 2] for i in range(3, n + 1): dp.append(dp[i - 1] + dp[i - 2]) return dp[n]
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20] 输出:15 解释:你将从下标为 1 的台阶开始。 - 支付 15 ,向上爬两个台阶,到达楼梯顶部。 总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1] 输出:6 解释:你将从下标为 0 的台阶开始。 - 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。 - 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。 - 支付 1 ,向上爬一个台阶,到达楼梯顶部。 总花费为 6 。
class Solution(object): def minCostClimbingStairs(self, cost): """ :type cost: List[int] :rtype: int """ dp = [0, 0] # dp如何初始化,因为你可以选择下标0或者是1的开始调,所以在这2个的话费是0 # dp[i]代表的是在第几阶的最小花费 for i in range(2, len(cost) + 1): dp.append(min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])) # 因为它可以眺1或者是2,所以要取一个最下值dp[i - 1] + cost[i - 1]当前dp[i - 1]的最小花费,加上它调出所需要的话费 return dp[len(cost)]