搭建大型分布式服务(四十)SpringBoot 整合多个kafka数据源-支持生产者

avatar
作者
筋斗云
阅读量:0

系列文章目录


文章目录


前言

本插件稳定运行上百个kafka项目,每天处理上亿级的数据的精简小插件,快速上手。

<dependency>     <groupId>io.github.vipjoey</groupId>     <artifactId>multi-kafka-starter</artifactId>     <version>最新版本号</version> </dependency> 

例如下面这样简单的配置就完成SpringBoot和kafka的整合,我们只需要关心com.mmc.multi.kafka.starter.OneProcessorcom.mmc.multi.kafka.starter.TwoProcessor 这两个Service的代码开发。

## topic1的kafka配置 spring.kafka.one.enabled=true spring.kafka.one.consumer.bootstrapServers=${spring.embedded.kafka.brokers} spring.kafka.one.topic=mmc-topic-one spring.kafka.one.group-id=group-consumer-one spring.kafka.one.processor=com.mmc.multi.kafka.starter.OneProcessor // 业务处理类名称 spring.kafka.one.consumer.auto-offset-reset=latest spring.kafka.one.consumer.max-poll-records=10 spring.kafka.one.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer spring.kafka.one.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer  ## topic2的kafka配置 spring.kafka.two.enabled=true spring.kafka.two.consumer.bootstrapServers=${spring.embedded.kafka.brokers} spring.kafka.two.topic=mmc-topic-two spring.kafka.two.group-id=group-consumer-two spring.kafka.two.processor=com.mmc.multi.kafka.starter.TwoProcessor // 业务处理类名称 spring.kafka.two.consumer.auto-offset-reset=latest spring.kafka.two.consumer.max-poll-records=10 spring.kafka.two.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer spring.kafka.two.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer  ## pb 消息消费者 spring.kafka.pb.enabled=true spring.kafka.pb.consumer.bootstrapServers=${spring.embedded.kafka.brokers} spring.kafka.pb.topic=mmc-topic-pb spring.kafka.pb.group-id=group-consumer-pb spring.kafka.pb.processor=pbProcessor spring.kafka.pb.consumer.auto-offset-reset=latest spring.kafka.pb.consumer.max-poll-records=10 spring.kafka.pb.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer spring.kafka.pb.consumer.value-deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer  ## kafka消息生产者 spring.kafka.four.enabled=true spring.kafka.four.producer.name=fourKafkaSender spring.kafka.four.producer.bootstrap-servers=${spring.embedded.kafka.brokers} spring.kafka.four.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer spring.kafka.four.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer   

国籍惯例,先上源码:Github源码

一、本文要点

本文将介绍通过封装一个starter,来实现多kafka数据源的配置,通过通过源码,可以学习以下特性。系列文章完整目录

  • SpringBoot 整合多个kafka数据源
  • SpringBoot 批量消费kafka消息
  • SpringBoot 优雅地启动或停止消费kafka
  • SpringBoot kafka本地单元测试(免集群)
  • SpringBoot 利用map注入多份配置
  • SpringBoot BeanPostProcessor 后置处理器使用方式
  • SpringBoot 将自定义类注册到IOC容器
  • SpringBoot 注入bean到自定义类成员变量
  • Springboot 取消限定符
  • SpringBoot 支持消费protobuf类型的kafka消息
  • SpringBoot Aware设计模式
  • SpringBoot 获取kafka消息中的topic、offset、partition、header等参数
  • SpringBoot 使用任意生产者发送kafka消息
  • SpringBoot 配置任意数量的kafka生产者

二、开发环境

  • jdk 1.8
  • maven 3.6.2
  • springboot 2.4.3
  • kafka-client 2.6.6
  • idea 2020

三、原项目

1、接前文,我们基本完成了kafka consumer常用的特性开发,有小伙伴问,我们该如何配置多个数据源生产者,想consumer一样简单,发送kafka消息呢?

 ## 1.配置 spring.kafka.four.enabled=true spring.kafka.four.producer.name=fourKafkaSender spring.kafka.four.producer.bootstrap-servers=${spring.embedded.kafka.brokers} spring.kafka.four.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer spring.kafka.four.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer  ## 2.引用 @Resource(name = "fourKafkaSender") private MmcKafkaMultiSender mmcKafkaMultiSender;  ## 3.使用 mmcKafkaMultiSender.sendStringMessage(topicOne, "aaa", json);  

答案是可以的、但我们要升级和优化一下。

四、修改项目

1、修改内部类MmcKafkaProperties类,增加生产者相关的配置。

    @EqualsAndHashCode(callSuper = true)     @Data     public static class Producer extends KafkaProperties.Producer {          /**          * 是否启用.          */         private boolean enabled = true;         /**          * 生产者名称,如果有设置则会覆盖默认的xxxKakfkaSender名称.          */         private String name;     }         /**          * 生产者.          */         private final Producer producer = new Producer();         /**          * Create an initial map of producer properties from the state of this instance.          * <p>          * This allows you to add additional properties, if necessary, and override the          * default kafkaProducerFactory bean.          *          * @return the producer properties initialized with the customizations defined on this          *         instance          */         Map<String, Object> buildProducerProperties() {             return new HashMap<>(this.producer.buildProperties());         } 

2、新增MmcKafkaSender接口,作为发送Kafka消息的唯一约束。

public interface MmcKafkaSender {      /**      * 发送kafka消息.      *      * @param topic        topic名称      * @param partitionKey 消息分区键      * @param message      具体消息      */     void sendStringMessage(String topic, String partitionKey, String message);       /**      * 发送kafka消息.      *      * @param topic        topic名称      * @param partitionKey 消息分区键      * @param message      具体消息      */     void sendProtobufMessage(String topic, String partitionKey, byte[] message); }   

3、新增MmcKafkaOutputContainer容器类,用于存储所有生产者,方便统一管理;

@Getter @Slf4j public class MmcKafkaOutputContainer {      /**      * 存放所有生产者.      */     private final Map<String, MmcKafkaSender> outputs;      /**      * 构造函数.      */     public MmcKafkaOutputContainer(Map<String, MmcKafkaSender> outputs) {         this.outputs = outputs;     }  } 

4、新增MmcKafkaSingleSender实现类,用于真实发送Kafka消息;

public class MmcKafkaSingleSender implements MmcKafkaSender {      private final KafkaTemplate<String, Object> template;       public MmcKafkaSingleSender(KafkaTemplate<String, Object> template) {         this.template = template;     }      @Override     public void sendStringMessage(String topic, String partitionKey, String message) {          template.send(topic, partitionKey, message);     }       @Override     public void sendProtobufMessage(String topic, String partitionKey, byte[] message) {          template.send(topic, partitionKey, message);      }  } 

5、修改MmcMultiProducerAutoConfiguration配置类,遍历所有配置,组装并生成MmcKafkaSingleSender,并注册到IOC容器;

 @Slf4j @Configuration @EnableConfigurationProperties(MmcMultiKafkaProperties.class) @ConditionalOnProperty(prefix = "spring.kafka", value = "enabled", matchIfMissing = true) public class MmcMultiProducerAutoConfiguration implements BeanFactoryAware {      private DefaultListableBeanFactory beanDefinitionRegistry;      @Resource     private MmcMultiKafkaProperties mmcMultiKafkaProperties;       @Bean     public MmcKafkaOutputContainer mmcKafkaOutputContainer() {          // 初始化一个存储所有生产者的哈希映射         Map<String, MmcKafkaSender> outputs = new HashMap<>();          // 获取所有的Kafka配置信息         Map<String, MmcMultiKafkaProperties.MmcKafkaProperties> kafkas = mmcMultiKafkaProperties.getKafka();          // 逐个遍历,并生成producer         for (Map.Entry<String, MmcMultiKafkaProperties.MmcKafkaProperties> entry : kafkas.entrySet()) {              // 唯一生产者名称             String name = entry.getKey();              // 生产者配置             MmcMultiKafkaProperties.MmcKafkaProperties properties = entry.getValue();              // 是否开启             if (properties.isEnabled()                     && properties.getProducer().isEnabled()                     && CommonUtil.isNotEmpty(properties.getProducer().getBootstrapServers())) {                  // bean名称                 String beanName = Optional.ofNullable(properties.getProducer().getName())                         .orElse(name + "KafkaSender");                  KafkaTemplate<String, Object> template = mmcdKafkaTemplate(properties);                  // 创建实例                 MmcKafkaSender sender = new MmcKafkaSingleSender(template);                 outputs.put(beanName, sender);                  // 注册到IOC                 beanDefinitionRegistry.registerSingleton(beanName, sender);             }          }          return new MmcKafkaOutputContainer(outputs);     }      private KafkaTemplate<String, Object> mmcdKafkaTemplate(MmcMultiKafkaProperties.MmcKafkaProperties producer) {          return new KafkaTemplate<>(baseKafkaProducerFactory(producer));      }      private ProducerFactory<String, Object> baseKafkaProducerFactory(MmcMultiKafkaProperties.MmcKafkaProperties producer) {         return new DefaultKafkaProducerFactory<>(producer.buildProducerProperties());     }      @Override     public void setBeanFactory(BeanFactory beanFactory) throws BeansException {         this.beanDefinitionRegistry = (DefaultListableBeanFactory) beanFactory;     } } 

五、测试一下

1、引入kafka测试需要的jar。参考文章:kafka单元测试

        <dependency>             <groupId>org.springframework.boot</groupId>             <artifactId>spring-boot-starter-test</artifactId>             <scope>test</scope>         </dependency>          <dependency>             <groupId>org.springframework.kafka</groupId>             <artifactId>spring-kafka-test</artifactId>             <scope>test</scope>         </dependency>                  <dependency>             <groupId>com.google.protobuf</groupId>             <artifactId>protobuf-java</artifactId>             <version>3.18.0</version>             <scope>test</scope>         </dependency>                  <dependency>             <groupId>com.google.protobuf</groupId>             <artifactId>protobuf-java-util</artifactId>             <version>3.18.0</version>             <scope>test</scope>         </dependency> 

2、消费者配置保持不变,增加生产者配置。

## json消息消费者 spring.kafka.one.enabled=true spring.kafka.one.consumer.bootstrapServers=${spring.embedded.kafka.brokers} spring.kafka.one.topic=mmc-topic-one spring.kafka.one.group-id=group-consumer-one spring.kafka.one.processor=oneProcessor spring.kafka.one.duplicate=false spring.kafka.one.snakeCase=false spring.kafka.one.consumer.auto-offset-reset=latest spring.kafka.one.consumer.max-poll-records=10 spring.kafka.one.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer spring.kafka.one.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer spring.kafka.one.container.threshold=2 spring.kafka.one.container.rate=1000 spring.kafka.one.container.parallelism=8  ## json消息生产者 spring.kafka.four.enabled=true spring.kafka.four.producer.name=fourKafkaSender spring.kafka.four.producer.bootstrap-servers=${spring.embedded.kafka.brokers} spring.kafka.four.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer spring.kafka.four.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer  

3、编写测试类。

@Slf4j @ActiveProfiles("dev") @ExtendWith(SpringExtension.class) @SpringBootTest(classes = {MmcMultiProducerAutoConfiguration.class, MmcMultiConsumerAutoConfiguration.class,         DemoService.class, OneProcessor.class}) @TestPropertySource(value = "classpath:application-string.properties") @DirtiesContext @EmbeddedKafka(partitions = 1, brokerProperties = {"listeners=PLAINTEXT://localhost:9092", "port=9092"},         topics = {"${spring.kafka.one.topic}"}) class KafkaStringMessageTest {       @Value("${spring.kafka.one.topic}")     private String topicOne;      @Value("${spring.kafka.two.topic}")     private String topicTwo;      @Resource(name = "fourKafkaSender")     private MmcKafkaSingleSender mmcKafkaSingleSender;       @Test     void testDealMessage() throws Exception {          Thread.sleep(2 * 1000);          // 模拟生产数据         produceMessage();          Thread.sleep(10 * 1000);     }      void produceMessage() {           for (int i = 0; i < 10; i++) {              DemoMsg msg = new DemoMsg();             msg.setRoutekey("routekey" + i);             msg.setName("name" + i);             msg.setTimestamp(System.currentTimeMillis());              String json = JsonUtil.toJsonStr(msg);              mmcKafkaSingleSender.sendStringMessage(topicOne, "aaa", json);           }     } }    

5、运行一下,测试通过,可以看到能正常发送消息和消费。
在这里插入图片描述

五、小结

将本项目代码构建成starter,就可以大大提升我们开发效率,我们只需要关心业务代码的开发,github项目源码:轻触这里。如果对你有用可以打个星星哦。下一篇,升级本starter,在kafka单分区下实现十万级消费处理速度。

加我加群一起交流学习!更多干货下载、项目源码和大厂内推等着你

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!