示例文本
- 参考文本: “Natural language processing is very interesting.”
- 生成文本: “Natural language processing is quite interesting.”
1. 提取 N-gram
1.1. Unigram(1-gram)
参考文本的Unigram:
["Natural", "language", "processing", "is", "very", "interesting"]
生成文本的Unigram:
["Natural", "language", "processing", "is", "quite", "interesting"]
1.2. Bigram(2-gram)
参考文本的Bigram:
["Natural language", "language processing", "processing is", "is very", "very interesting"]
生成文本的Bigram:
["Natural language", "language processing", "processing is", "is quite", "quite interesting"]
2. 计算 N-gram 重叠
2.1. Unigram 重叠
重叠的Unigram:
["Natural", "language", "processing", "is", "interesting"]
重叠的Unigram数量:5
总参考文本Unigram数量:6
总生成文本Unigram数量:6
2.2. Bigram 重叠
重叠的Bigram:
["Natural language", "language processing", "processing is"]
重叠的Bigram数量:3
总参考文本Bigram数量:5
总生成文本Bigram数量:5
3. 计算评估指标
3.1. 精确率(Precision)
Unigram 精确率:
Precision Unigram = 重叠的Unigram数量 生成文本中的总Unigram数量 = 5 6 ≈ 0.83 \text{Precision}_{\text{Unigram}} = \frac{\text{重叠的Unigram数量}}{\text{生成文本中的总Unigram数量}} = \frac{5}{6} \approx 0.83 PrecisionUnigram=生成文本中的总Unigram数量重叠的Unigram数量=65≈0.83Bigram 精确率:
Precision Bigram = 重叠的Bigram数量 生成文本中的总Bigram数量 = 3 5 = 0.6 \text{Precision}_{\text{Bigram}} = \frac{\text{重叠的Bigram数量}}{\text{生成文本中的总Bigram数量}} = \frac{3}{5} = 0.6 PrecisionBigram=生成文本中的总Bigram数量重叠的Bigram数量=53=0.6
3.2. 召回率(Recall)
Unigram 召回率:
Recall Unigram = 重叠的Unigram数量 参考文本中的总Unigram数量 = 5 6 ≈ 0.83 \text{Recall}_{\text{Unigram}} = \frac{\text{重叠的Unigram数量}}{\text{参考文本中的总Unigram数量}} = \frac{5}{6} \approx 0.83 RecallUnigram=参考文本中的总Unigram数量重叠的Unigram数量=65≈0.83Bigram 召回率:
Recall Bigram = 重叠的Bigram数量 参考文本中的总Bigram数量 = 3 5 = 0.6 \text{Recall}_{\text{Bigram}} = \frac{\text{重叠的Bigram数量}}{\text{参考文本中的总Bigram数量}} = \frac{3}{5} = 0.6 RecallBigram=参考文本中的总Bigram数量重叠的Bigram数量=53=0.6
3.3. F1 分数(F1 Score)
Unigram F1分数:
F1 Unigram = 2 × Precision Unigram × Recall Unigram Precision Unigram + Recall Unigram = 2 × 0.83 × 0.83 0.83 + 0.83 ≈ 0.83 \text{F1}_{\text{Unigram}} = 2 \times \frac{\text{Precision}_{\text{Unigram}} \times \text{Recall}_{\text{Unigram}}}{\text{Precision}_{\text{Unigram}} + \text{Recall}_{\text{Unigram}}} = 2 \times \frac{0.83 \times 0.83}{0.83 + 0.83} \approx 0.83 F1Unigram=2×PrecisionUnigram+RecallUnigramPrecisionUnigram×RecallUnigram=2×0.83+0.830.83×0.83≈0.83Bigram F1分数:
F1 Bigram = 2 × Precision Bigram × Recall Bigram Precision Bigram + Recall Bigram = 2 × 0.6 × 0.6 0.6 + 0.6 = 0.6 \text{F1}_{\text{Bigram}} = 2 \times \frac{\text{Precision}_{\text{Bigram}} \times \text{Recall}_{\text{Bigram}}}{\text{Precision}_{\text{Bigram}} + \text{Recall}_{\text{Bigram}}} = 2 \times \frac{0.6 \times 0.6}{0.6 + 0.6} = 0.6 F1Bigram=2×PrecisionBigram+RecallBigramPrecisionBigram×RecallBigram=2×0.6+0.60.6×0.6=0.6
4. Python 代码实现
from collections import Counter from typing import List def extract_ngrams(text: str, n: int) -> List[str]: words = text.split() return [' '.join(words[i:i+n]) for i in range(len(words)-n+1)] def calculate_ngram_overlap(reference: str, generated: str, n: int): reference_ngrams = extract_ngrams(reference, n) generated_ngrams = extract_ngrams(generated, n) reference_counter = Counter(reference_ngrams) generated_counter = Counter(generated_ngrams) overlapping_ngrams = set(reference_counter.keys()) & set(generated_counter.keys()) overlap_count = sum(min(reference_counter[ngram], generated_counter[ngram]) for ngram in overlapping_ngrams) precision = overlap_count / len(generated_ngrams) if generated_ngrams else 0 recall = overlap_count / len(reference_ngrams) if reference_ngrams else 0 f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) else 0 return precision, recall, f1_score reference_text = "Natural language processing is very interesting." generated_text = "Natural language processing is quite interesting." # 计算Unigram(1-gram) precision_unigram, recall_unigram, f1_unigram = calculate_ngram_overlap(reference_text, generated_text, 1) print(f"Unigram - 精确率: {precision_unigram:.2f}, 召回率: {recall_unigram:.2f}, F1分数: {f1_unigram:.2f}") # 计算Bigram(2-gram) precision_bigram, recall_bigram, f1_bigram = calculate_ngram_overlap(reference_text, generated_text, 2) print(f"Bigram - 精确率: {precision_bigram:.2f}, 召回率: {recall_bigram:.2f}, F1分数: {f1_bigram:.2f}")
Code
完整示例代码已上传至:Machine Learning and Deep Learning Algorithms with NumPy
此项目包含更多AI相关的算法numpy实现,供大家学习参考使用,欢迎star~
备注
个人水平有限,有问题随时交流~