【大模型】【面试】独家总结表格

avatar
作者
筋斗云
阅读量:0
问题解答
你能解释一下Transformer架构及其在大型语言模型中的作用吗?Transformer架构是一种深度神经网络架构,于2017年由Vaswani等人在他们的论文“Attention is All You Need”中首次提出。自那以后,它已成为大型语言模型(如BERT和GPT)最常用的架构。
Transformer架构使用注意机制来解析输入序列,例如句子或段落,专门用于自然语言处理(NLP)应用。与传统的循环神经网络(RNN)不同,Transformer采用自注意力技术,使其能够同时关注输入序列的多个部分。
在大型语言模型中,Transformer架构用于创建输入文本的深层表示,然后可以用于各种NLP任务,如文本分类、命名实体识别和文本生成。这些模型在大量文本数据上进行了预训练,使它们能够学习数据中的模式和关系,然后可以进行特定的NLP任务的微调。
总的来说,Transformer架构通过提供强大而灵活的架构,彻底改变了NLP领域,特别适用于处理大量文本数据。在大型语言模型中的使用已经在各种NLP任务的性能上实现了显著的改进,并使从业

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!