Python爬虫技术 第14节 HTML结构解析

avatar
作者
筋斗云
阅读量:0

HTML 结构解析是 Web 爬虫中的核心技能之一,它允许你从网页中提取所需的信息。Python 提供了几种流行的库来帮助进行 HTML 解析,其中最常用的是 BeautifulSouplxml

在这里插入图片描述

1. 安装必要的库

首先,你需要安装 requests(用于发送 HTTP 请求)和 beautifulsoup4(用于解析 HTML)。可以通过 pip 安装:

pip install requests beautifulsoup4 

2. 发送 HTTP 请求并获取 HTML 内容

使用 requests 库可以轻松地从网站抓取 HTML 页面:

import requests  url = "https://www.example.com" response = requests.get(url)  # 检查请求是否成功 if response.status_code == 200:     html_content = response.text else:     print(f"Failed to retrieve page, status code: {response.status_code}") 

3. 解析 HTML 内容

接下来,使用 BeautifulSoup 解析 HTML 内容:

from bs4 import BeautifulSoup  soup = BeautifulSoup(html_content, 'html.parser') 

这里的 'html.parser' 是解析器的名字,BeautifulSoup 支持多种解析器,包括 Python 自带的标准库、lxmlhtml5lib

4. 选择和提取信息

一旦你有了 BeautifulSoup 对象,你可以开始提取信息。以下是几种常见的选择器方法:

  • 通过标签名

    titles = soup.find_all('h1') 
  • 通过类名

    articles = soup.find_all('div', class_='article') 
  • 通过 ID

    main_content = soup.find(id='main-content') 
  • 通过属性

    links = soup.find_all('a', href=True) 
  • 组合选择器

    article_titles = soup.select('div.article h2.title') 

5. 遍历和处理数据

提取到数据后,你可以遍历并处理它们:

for title in soup.find_all('h2'):     print(title.text.strip()) 

6. 递归解析

对于复杂的嵌套结构,你可以使用递归函数来解析:

def parse_section(section):     title = section.find('h2')     if title:         print(title.text.strip())      sub_sections = section.find_all('section')     for sub_section in sub_sections:         parse_section(sub_section)  sections = soup.find_all('section') for section in sections:     parse_section(section) 

7. 实战示例

让我们创建一个完整的示例,抓取并解析一个简单的网页:

import requests from bs4 import BeautifulSoup  url = "https://www.example.com"  # 发送请求并解析 HTML response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser')  # 找到所有的文章标题 article_titles = soup.find_all('h2', class_='article-title')  # 输出所有文章标题 for title in article_titles:     print(title.text.strip()) 

这个示例展示了如何从网页中抓取所有具有 class="article-title"h2 元素,并打印出它们的文本内容。

以上就是使用 Python 和 BeautifulSoup 进行 HTML 结构解析的基本流程。当然,实际应用中你可能需要处理更复杂的逻辑,比如处理 JavaScript 渲染的内容或者分页等。

在我们已经讨论的基础上,让我们进一步扩展代码,以便处理更复杂的场景,比如分页、错误处理、日志记录以及数据持久化。我们将继续使用 requestsBeautifulSoup,并引入 loggingsqlite3 来记录日志和存储数据。

1. 异常处理和日志记录

在爬取过程中,可能会遇到各种问题,如网络错误、服务器错误或解析错误。使用 try...except 块和 logging 模块可以帮助我们更好地处理这些问题:

import logging import requests from bs4 import BeautifulSoup  logging.basicConfig(filename='crawler.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s')  def fetch_data(url):     try:         response = requests.get(url)         response.raise_for_status()  # Raises an HTTPError for bad responses         soup = BeautifulSoup(response.text, 'html.parser')         return soup     except requests.exceptions.RequestException as e:         logging.error(f"Failed to fetch {url}: {e}")         return None  # Example usage url = 'https://www.example.com' soup = fetch_data(url) if soup:     # Proceed with parsing... else:     logging.info("No data fetched, skipping...") 

2. 分页处理

许多网站使用分页显示大量数据。你可以通过检查页面源码找到分页链接的模式,并编写代码来遍历所有页面:

def fetch_pages(base_url, page_suffix='page/'):     current_page = 1     while True:         url = f"{base_url}{page_suffix}{current_page}"         soup = fetch_data(url)         if not soup:             break         # Process page data here...          # Check for next page link         next_page_link = soup.find('a', text='Next')         if not next_page_link:             break         current_page += 1 

3. 数据持久化:SQLite

使用数据库存储爬取的数据可以方便后续分析和检索。SQLite 是一个轻量级的数据库,非常适合小型项目:

import sqlite3  def init_db():     conn = sqlite3.connect('data.db')     cursor = conn.cursor()     cursor.execute('''         CREATE TABLE IF NOT EXISTS articles (             id INTEGER PRIMARY KEY AUTOINCREMENT,             title TEXT NOT NULL,             author TEXT,             published_date DATE         )     ''')     conn.commit()     return conn  def save_article(conn, title, author, published_date):     cursor = conn.cursor()     cursor.execute('''         INSERT INTO articles (title, author, published_date) VALUES (?, ?, ?)     ''', (title, author, published_date))     conn.commit()  # Initialize database conn = init_db()  # Save data save_article(conn, "Example Title", "Author Name", "2024-07-24") 

4. 完整示例:抓取分页数据并保存到 SQLite

让我们将上述概念整合成一个完整的示例,抓取分页数据并将其保存到 SQLite 数据库:

import logging import requests from bs4 import BeautifulSoup import sqlite3  logging.basicConfig(filename='crawler.log', level=logging.INFO)  def fetch_data(url):     try:         response = requests.get(url)         response.raise_for_status()         return BeautifulSoup(response.text, 'html.parser')     except requests.exceptions.RequestException as e:         logging.error(f"Failed to fetch {url}: {e}")         return None  def fetch_pages(base_url, page_suffix='page/'):     conn = sqlite3.connect('data.db')     cursor = conn.cursor()     cursor.execute('''         CREATE TABLE IF NOT EXISTS articles (             id INTEGER PRIMARY KEY AUTOINCREMENT,             title TEXT NOT NULL,             author TEXT,             published_date DATE         )     ''')     conn.commit()      current_page = 1     while True:         url = f"{base_url}{page_suffix}{current_page}"         soup = fetch_data(url)         if not soup:             break          # Assume the structure of the site allows us to find titles easily         titles = soup.find_all('h2', class_='article-title')         for title in titles:             save_article(conn, title.text.strip(), None, None)          next_page_link = soup.find('a', text='Next')         if not next_page_link:             break         current_page += 1      conn.close()  def save_article(conn, title, author, published_date):     cursor = conn.cursor()     cursor.execute('''         INSERT INTO articles (title, author, published_date) VALUES (?, ?, ?)     ''', (title, author, published_date))     conn.commit()  # Example usage base_url = 'https://www.example.com/articles/' fetch_pages(base_url) 

这个示例将抓取 https://www.example.com/articles/ 上的分页数据,保存文章标题到 SQLite 数据库。注意,你需要根据实际网站的 HTML 结构调整 find_allfind 方法的参数。

既然我们已经有了一个基本的框架来抓取分页数据并存储到 SQLite 数据库中,现在让我们进一步完善这个代码,包括添加更详细的错误处理、日志记录、以及处理动态加载的网页内容(通常由 JavaScript 渲染)。

1. 更详细的错误处理

fetch_data 函数中,除了处理请求错误之外,我们还可以捕获和记录其他可能发生的错误,比如解析 HTML 的错误:

def fetch_data(url):     try:         response = requests.get(url)         response.raise_for_status()         soup = BeautifulSoup(response.text, 'html.parser')         return soup     except requests.exceptions.RequestException as e:         logging.error(f"Request error fetching {url}: {e}")     except Exception as e:         logging.error(f"An unexpected error occurred: {e}")     return None 

2. 更详细的日志记录

在日志记录方面,我们可以增加更多的信息,比如请求的 HTTP 状态码、响应时间等:

import time  def fetch_data(url):     try:         start_time = time.time()         response = requests.get(url)         elapsed_time = time.time() - start_time         response.raise_for_status()         soup = BeautifulSoup(response.text, 'html.parser')         logging.info(f"Fetched {url} successfully in {elapsed_time:.2f} seconds, status code: {response.status_code}")         return soup     except requests.exceptions.RequestException as e:         logging.error(f"Request error fetching {url}: {e}")     except Exception as e:         logging.error(f"An unexpected error occurred: {e}")     return None 

3. 处理动态加载的内容

当网站使用 JavaScript 动态加载内容时,普通的 HTTP 请求无法获取完整的内容。这时可以使用 SeleniumPyppeteer 等库来模拟浏览器行为。这里以 Selenium 为例:

from selenium import webdriver from selenium.webdriver.chrome.options import Options  def fetch_data_with_js(url):     options = Options()     options.headless = True  # Run Chrome in headless mode     driver = webdriver.Chrome(options=options)     driver.get(url)          # Add wait time or wait for certain elements to load     time.sleep(3)  # Wait for dynamic content to load          html = driver.page_source     driver.quit()          return BeautifulSoup(html, 'html.parser') 

要使用这段代码,你需要先下载 ChromeDriver 并确保它在系统路径中可执行。此外,你还需要安装 selenium 库:

pip install selenium 

4. 整合所有改进点

现在,我们可以将上述所有改进点整合到我们的分页数据抓取脚本中:

import logging import time import requests from bs4 import BeautifulSoup import sqlite3 from selenium import webdriver from selenium.webdriver.chrome.options import Options  logging.basicConfig(filename='crawler.log', level=logging.INFO)  def fetch_data(url):     try:         start_time = time.time()         response = requests.get(url)         elapsed_time = time.time() - start_time         response.raise_for_status()         soup = BeautifulSoup(response.text, 'html.parser')         logging.info(f"Fetched {url} successfully in {elapsed_time:.2f} seconds, status code: {response.status_code}")         return soup     except requests.exceptions.RequestException as e:         logging.error(f"Request error fetching {url}: {e}")     except Exception as e:         logging.error(f"An unexpected error occurred: {e}")     return None  def fetch_data_with_js(url):     options = Options()     options.headless = True     driver = webdriver.Chrome(options=options)     driver.get(url)     time.sleep(3)     html = driver.page_source     driver.quit()     return BeautifulSoup(html, 'html.parser')  def fetch_pages(base_url, page_suffix='page/', use_js=False):     conn = sqlite3.connect('data.db')     cursor = conn.cursor()     cursor.execute('''         CREATE TABLE IF NOT EXISTS articles (             id INTEGER PRIMARY KEY AUTOINCREMENT,             title TEXT NOT NULL,             author TEXT,             published_date DATE         )     ''')     conn.commit()      current_page = 1     fetch_function = fetch_data_with_js if use_js else fetch_data      while True:         url = f"{base_url}{page_suffix}{current_page}"         soup = fetch_function(url)         if not soup:             break          titles = soup.find_all('h2', class_='article-title')         for title in titles:             save_article(conn, title.text.strip(), None, None)          next_page_link = soup.find('a', text='Next')         if not next_page_link:             break         current_page += 1      conn.close()  def save_article(conn, title, author, published_date):     cursor = conn.cursor()     cursor.execute('''         INSERT INTO articles (title, author, published_date) VALUES (?, ?, ?)     ''', (title, author, published_date))     conn.commit()  # Example usage base_url = 'https://www.example.com/articles/' use_js = True  # Set to True if the site uses JS for loading content fetch_pages(base_url, use_js=use_js) 

这个改进版的脚本包含了错误处理、详细的日志记录、以及处理动态加载内容的能力,使得它更加健壮和实用。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!