Opencv threshold函数、adaptiveThreshold函数详解和示例

avatar
作者
猴君
阅读量:0

1.threshold函数

double cv::threshold(InputArray src, OutputArray dst,  double thresh, double maxval, int type )
  • src:待二值化的图像,图像只能是 CV_8U 和 CV_32F 两种数据类型。对于图像通道数目的要求与选择的二值化方法相关。
  • dst:二值化后的图像,与输入图像具有相同的尺寸、数据类型和通道数。
  • thresh:二值化的阈值。
  • maxval:二值化过程的最大值,它只在 THRESH_BINARY 和 THRESH_BINARY_INV 两种二值化方法中才使用。
  • type:选择图像二值化方法的标志。

                                                 二值化方法可选择的标志及含义

标志参数作用
THRESH_BINARY灰度值大于阈值的为最大值,其他值为 0
THRESH_BINARY_INV 灰度值大于阈值的为 0,其他值为最大值
THRESH_TRUNC 灰度值大于阈值的为阈值,其他值不变
THRESH_TOZERO 灰度值大于阈值的不变,其他值为 0
THRESH_TOZERO_INV 灰度值大于阈值的为 0,其他值不变
THRESH_OTSU大津法自动寻求全局阈值
THRESH_TRIANGLE 三角形法自动寻求全局阈值

为了方便讲解,我们使用如下的一个图像,红色表示图像,黑色是图像的边界,蓝色是阈值

                                

                                                                                原图 

1.1 THRESH_BINARY 

  1. 大于阈值,取最大值。
  2. 小于等于阈值取0。

公式:

对于原图,如果我们进行二值化操作,那么蓝色的线以上的,都变成最大值,蓝色的线以下的线都变成0

                                

1.2 THRESH_BINARY_INV

  1. 大于阈值,取0。
  2. 小于等于阈值,取最大值。

公式:

对于原图,如果我们进行反二值化操作,那么蓝色的线以下的,都变成最大值,蓝色的线以上的线都变成0

                ​​​​​​​        ​​​​​​​        

1.3  THRESH_TRUNC

  1. 大于阈值,取阈值
  2. 小于等于阈值,取原值

​​​​​​​公式:

 对于原图,如果我们进行截断操作

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

1.4 THRESH_TOZERO 

  1. 大于阈值的,取原值。
  2. 小于等于阈值,取0

公式:

对于原图,如果我们进行操作

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

1.5  THRESH_TOZERO_INV

  1. 大于阈值的,取0。
  2. 小于等于阈值,取原值

公式:

 对于原图,如果我们进行操作

        ​​​​​​​        ​​​​​​​        ​​​​​​​         

参考:【opencv学习笔记】015之基本阈值操作_最大阈值和最小阈值公式-CSDN博客 

1.6 代码示例 

#include <opencv2/opencv.hpp>  #include <iostream>  #include <vector>   using namespace std;  using namespace cv;   int main()  {      Mat img = imread("../pic/gril_1.jpg");      if (img.empty())      {          cout << "请确认图像文件名称是否正确" << endl;          return -1;      }      imshow("原画", img);      Mat gray;      double a , b ,c ,d ;     cvtColor(img, gray, COLOR_BGR2GRAY);      Mat img_B, img_B_V, gray_B,gray_B_V, gray_T, gray_T_V, gray_TRUNC ;           //彩色图像二值化      threshold(img, img_B, 125, 255, THRESH_BINARY);      threshold(img, img_B_V, 125, 255, THRESH_BINARY_INV);      imshow("img_B", img_B);      imshow("img_B_V", img_B_V);           //灰度图 BINARY 二值化     threshold(gray, gray_B, 125, 255, THRESH_BINARY);      threshold(gray, gray_B_V, 125, 255, THRESH_BINARY_INV);      imshow("gray_B", gray_B);      imshow("gray_B_V", gray_B_V);           //灰度图像 TOZERO 变换     threshold(gray, gray_T, 125, 255, THRESH_TOZERO);      threshold(gray, gray_T_V, 125, 255, THRESH_TOZERO_INV);      imshow("gray_T", gray_T);      imshow("gray_T_V", gray_T_V);           //灰度图像 TRUNC 变换     threshold(gray, gray_TRUNC, 125, 255, THRESH_TRUNC);      imshow("gray_TRUNC", gray_TRUNC);       waitKey(0);      return 0;  }

结果:

 

 

1.7 THRESH_OTSU 和 THRESH_TRIANGLE 

       这两种标志是获取阈值的方法,并不是阈值比较方法的标志,这两个标志可以与前面 5 种标志 一起使用,例如“THRESH_BINARY| THRESH_OTSU”。前面 5 种标志在调用函数时都需要人为 地设置阈值,如果对图像不了解,设置的阈值不合理,就会对处理后的效果造成严重的影响。这两 个标志分别表示利用大津法(OTSU)和三角形法(TRIANGLE)结合图像灰度值分布特性获取二 值化的阈值,并将阈值以函数返回值的形式给出(简单来说就是重新自动设置二值化的阈值 )。因此,如果该函数最后一个参数设置了这两个标 志中的任何一个,那么该函数第三个参数 thresh 将由系统自动给出,但是在调用函数时仍然不能默认,只是程序不会使用这个数值。需要注意的是,到目前为止,OpenCV 4 中针对这两个标志只支 持输入 CV_8UC1 类型的图像。         threshold()函数全局只使用一个阈值,在实际情况中,由于光照不均匀以及阴影的存在,全局 只有一个阈值会使得在阴影处的白色区域也会被函数二值化成黑色,因此 adaptiveThreshold()函数提供了两种局部自适应阈值的二值化方法。

2.adaptiveThreshold函数

void cv::adaptiveThreshold(InputArray src, OutputArray dst, double maxValue,  int adaptiveMethod, int thresholdType, int blockSize, double C )
  • src:待二值化的图像,图像只能是 CV_8UC1 数据类型。
  • dst:二值化后的图像,与输入图像具有相同的尺寸、数据类型。
  • maxValue:二值化的最大值
  • adaptiveMethod:自适应确定阈值的方法,分为均值法 ADAPTIVE_THRESH_MEAN_C和高斯法 ADAPTIVE_THRESH_GAUSSIAN_C 两种。 
  • thresholdType:选择图像二值化方法的标志,只能是 THRESH_BINARY 和 THRESH_BINARY_INV。
  • blockSize:自适应确定阈值的像素邻域大小,一般为 3、5、7 的奇数。
  • C:从平均值或者加权平均值中减去的常数,可以为正,也可以为负。

第一种ADAPTIVE_THRESH_MEAN_C,针对像素(x,y)的计算方式如下:

        T(x,y)结果是在(x,y)的邻域blockSize×blockSize范围内所有灰度值的均值减去第7个参数double C;

第二种ADAPTIVE_THRESH_GAUSSIAN_C,针对像素(x,y)的计算方式如下:

  • 首先,生成一个大小为blockSize×blockSize的高斯核,作为权重;
  • 其次,利用高斯核与(x,y)邻域范围内灰度值,进行加权求和,再减去减去第7个参数double C,得到T(x,y);

2.1代码示例(包含THRESH_OTSU 和 THRESH_TRIANGLE )

#include <opencv2/opencv.hpp>  #include <iostream>  #include <vector>    using namespace std;  using namespace cv;    int main()  {     //灰度图像大津法和三角形法二值化     Mat img_Thr = imread("../pic/gril_2.png", IMREAD_GRAYSCALE);      double a ,b ,c,d ;     if (img_Thr.empty())      {          cout << "请确认图像文件名称是否正确" << endl;          return -1;      }      //cvtColor(img_Thr, img_Thr, COLOR_BGR2GRAY);      Mat img_Thr_O, img_Thr_O_1,img_Thr_T,img_Thr_T_1;      a = threshold(img_Thr, img_Thr_O, 100, 255, THRESH_BINARY | THRESH_OTSU);      b = threshold(img_Thr, img_Thr_T, 125, 255, THRESH_BINARY | THRESH_TRIANGLE);      c = threshold(img_Thr, img_Thr_O_1, 150, 255, THRESH_BINARY | THRESH_OTSU);      d = threshold(img_Thr, img_Thr_T_1, 200, 255, THRESH_BINARY | THRESH_TRIANGLE);      cout << "333  a  =" <<a <<"  b = " << b << endl;      cout << "333  c  =" <<c <<"  d = " << d << endl;       imshow("img_Thr", img_Thr);      imshow("img_Thr_O", img_Thr_O);      imshow("img_Thr_T", img_Thr_T);      imshow("img_Thr_O_1", img_Thr_O_1);      imshow("img_Thr_T_1", img_Thr_T_1);        //灰度图像自适应二值化     Mat adaptive_mean, adaptive_gauss;      adaptiveThreshold(img_Thr, adaptive_mean, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 255, 0);      adaptiveThreshold(img_Thr, adaptive_gauss, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 55, 0);        imshow("adaptive_mean", adaptive_mean);      imshow("adaptive_gauss", adaptive_gauss);        waitKey(0);      return 0;  }

结果:threshold函数不管设置的阈值是多少,只要有THRESH_OTSU 和 THRESH_TRIANGLE,就会重新匹配该照片的阈值

 

 

adaptiveThreshold函数可参考: OpenCV-C++ 图像自适应阈值二值化处理adaptiveThreshold - chenzhen0530 - 博客园 (cnblogs.com)

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!