Unity矩阵入门—Matrix4x4的平移 旋转 缩放

avatar
作者
猴君
阅读量:0

最近在看矩阵,顺路记录一下复习吧

1.矩阵变换- 平移

  • 向量矩阵转换在计算机图形学和游戏开发中起着非常重要的作用,它被广泛应用于以下几个方面:
    • 坐标变换:通过向量矩阵转换,可以实现物体在不同坐标系之间的变换,包括平移、旋转和缩放等操作。例如,在游戏中,通过将一个模型的顶点坐标乘以一个变换矩阵,可以实现该模型的移动、旋转和缩放。
    • 镜头变换:在计算机图形学中,相机(或镜头)的位置和方向对于视图的呈现至关重要。通过将相机的位置和方向与场景中的物体进行转换,可以实现正交投影或透视投影,从而获得不同的视角和观察效果。
    • 物体变形:通过应用变换矩阵,可以实现对物体的形态进行自由的变形。例如,在角色动画和变形动画中,通过对关节和骨骼进行变换,可以实现角色的运动和形态的变化。
    • 碰撞检测和物理模拟:向量矩阵转换可以应用于碰撞检测和物理模拟中,以便计算物体之间的相对位置、方向和速度等信息,并进行相应的碰撞判断和物理计算。
  • 先来复习一下矩阵相乘的条件,左边的列数和右边的行数相等时才可进行相乘,得出来的结果矩阵行数是左边决定,列数是右边决定,所以所产生了以下区别
  • 对于一个4x4的矩阵
    • 他的第1 2 3行或列(unity中是列矩阵)代表了x y z轴的坐标基向量,是轴的向量,也代表了轴旋转,第四行或列一般是表示坐标平移信息
  • 行向量 是 左乘矩阵(行向量x行矩阵)Unity不是用行矩阵的
    • 示例
    • 设本地坐标向量为 v = (vx, vy, vz, vw),变换矩阵为 M,计算向量 v 乘以变换矩阵 M 得到 v'
[ m1  m2  m3  m4 ] [ m11 m12 m13 m14 ] [ m21 m22 m23 m24 ] [ m31 m32 m33 m34 ]  v'x = m1 * vx + m11 * vy + m21 * vz + m31 * vw v'y = m2 * vx + m12 * vy + m22 * vz + m32 * vw v'z = m3 * vx + m13 * vy + m23 * vz + m33 * vw v'w = m4 * vx + m14 * vy + m24 * vz + m34 * vw
  • 列向量是右乘矩阵 (列矩阵x列向量) Unity里面一般就是列向量,所以Matrix4x4*Vector4只能右乘
    • 示例

  • ​结果为:M*V=v'为以下结果
v'x = m1*vx + m2*vy + m3*vz + m4*vw v'y = m11*vx + m12*vy + m13*vz + m14*vw v'z = m21*vx + m22*vy + m23*vz + m24*vw v'w = m31*vx + m32*vy + m33*vz + m34*vw
  • 示例2 对于大多数常见的欧几里德变换(如平移、旋转和缩放),向量的第四个分量 w 通常设置为 1 这里w值只是计算示
[ 1   2   3   4  ] [ 5   6   7   8  ] [ 9   10  11  12 ] [ 13  14  15  16 ]  向量 v = (1, 2, 3, 1)  v'x = 1*1 + 2*2 + 3*3 + 4*1 = 19 v'y = 5*1 + 6*2 + 7*3 + 8*1 = 47 v'z = 9*1 + 10*2 + 11*3 + 12*1 = 75 v'w = 13*1 + 14*2 + 15*3 + 16*1 = 103  向量乘法结果为 v' = (19, 47, 75, 103)
  • Unity示例:
using System.Collections; using System.Collections.Generic; using UnityEngine;  public class MatrixDemo : MonoBehaviour {     public Matrix4x4 matrix1;     public Vector4 MovePoint;      // Start is called before the first frame update     void Start()     {         //这里是赋值整个变换矩阵  M=T*R*S         matrix1.SetTRS(transform.position,transform.rotation,transform.localScale);     }      // Update is called once per frame     void Update()     {         if (Input.GetKeyDown(KeyCode.Q))         {             OnMatrix4x4Move();         }     }     /// <summary>     /// 矩阵平移,第四列是标记坐标信息的     /// </summary>     public void OnMatrix4x4Move()      {         Vector4 v4 = new Vector4(0,0,0,1);          matrix1[0, 3] = MovePoint.x;         matrix1[1, 3] = MovePoint.y;         matrix1[2, 3] = MovePoint.z;          v4 = matrix1 * v4;         transform.position = new Vector3(v4.x,v4.y,v4.z);     } }

2.矩阵变换-旋转

  • 三维图形的旋转可以绕三个坐标轴进行,以下是左手法则的旋转变换矩阵分别为:

  • 根据上面可以推导出,这里w的tr(r)是矩阵的迹,也就是矩阵对角元素的和

  • Unity示例:
using System.Collections; using System.Collections.Generic; using UnityEngine;  public class MatrixDemo : MonoBehaviour {     public Matrix4x4 matrix1;     // public Matrix4x4 matrixRotate;     public Vector4 MovePoint;       public Vector3 RotateData;     // Start is called before the first frame update     void Start()     {         //这里是赋值整个变换矩阵  M=T*R*S         matrix1.SetTRS(transform.position, transform.rotation, transform.localScale);     }      // Update is called once per frame     void Update()     {         if (Input.GetKeyDown(KeyCode.Q))         {             OnMatrix4x4Move();         }         if (Input.GetKeyDown(KeyCode.W))         {             OnMatrix4x4Rotate();         }      }     /// <summary>     /// 矩阵平移,第四列是标记坐标信息的     /// </summary>     public void OnMatrix4x4Move()     {         Vector4 v4 = new Vector4(0, 0, 0, 1);          matrix1[0, 3] = MovePoint.x;         matrix1[1, 3] = MovePoint.y;         matrix1[2, 3] = MovePoint.z;          v4 = matrix1 * v4;         transform.position = new Vector3(v4.x, v4.y, v4.z);     }     /// <summary>     /// 矩阵旋转,这里是按本地旋转来的,例如先转x轴30再转Y,这里Y是基于X30度去转的     /// </summary>     public void OnMatrix4x4Rotate()     {         Matrix4x4 matrixRotateX = Matrix4x4.identity;         Matrix4x4 matrixRotateY = Matrix4x4.identity;         Matrix4x4 matrixRotateZ = Matrix4x4.identity;         Matrix4x4 matrixRotate = Matrix4x4.identity;       //  if (RotateData.x != 0)         {             matrixRotateX[1, 1] = Mathf.Cos(RotateData.x * Mathf.Deg2Rad);             matrixRotateX[2, 1] = Mathf.Sin(RotateData.x * Mathf.Deg2Rad);             matrixRotateX[1, 2] = -Mathf.Sin(RotateData.x * Mathf.Deg2Rad);             matrixRotateX[2, 2] = Mathf.Cos(RotateData.x * Mathf.Deg2Rad);         }        // if (RotateData.y != 0)         {             matrixRotateY[0, 0] = Mathf.Cos(RotateData.y * Mathf.Deg2Rad);             matrixRotateY[2, 0] = -Mathf.Sin(RotateData.y * Mathf.Deg2Rad);             matrixRotateY[0, 2] = Mathf.Sin(RotateData.y * Mathf.Deg2Rad);             matrixRotateY[2, 2] = Mathf.Cos(RotateData.y * Mathf.Deg2Rad);         }       //  if (RotateData.z != 0)         {             matrixRotateZ[0, 0] = Mathf.Cos(RotateData.z * Mathf.Deg2Rad);             matrixRotateZ[1, 0] = Mathf.Sin(RotateData.z * Mathf.Deg2Rad);             matrixRotateZ[0, 1] = -Mathf.Sin(RotateData.z * Mathf.Deg2Rad);             matrixRotateZ[1, 1] = Mathf.Cos(RotateData.z * Mathf.Deg2Rad);         }         matrixRotate = matrixRotateX * matrixRotateY * matrixRotateZ;          float vW = Mathf.Sqrt(matrixRotate.m00 + matrixRotate.m11 + matrixRotate.m22 + 1) / 2;         float w = vW * 4;         float vX = (matrixRotate.m21 - matrixRotate.m12) / w;         float vY = (matrixRotate.m02 - matrixRotate.m20) / w;         float vZ = (matrixRotate.m10 - matrixRotate.m01) / w;          transform.rotation= new Quaternion(vX, vY, vZ, vW);       } }

3.矩阵变换-缩放

  • 也是乘法的用向量代表缩放,

  • 上方向量经过缩放两倍从 [1,2,3,1]变成了[2,4,6,1]
  • 如果是unity注意是要右乘,因为他是用的列矩阵
  • Unity示例
using System.Collections; using System.Collections.Generic; using UnityEngine;  public class MatrixDemo : MonoBehaviour {     public Matrix4x4 matrix1;     // public Matrix4x4 matrixRotate;     public Vector4 MovePoint;       public Vector3 RotateData;     public Vector3 ScaleData=Vector3.one;     // Start is called before the first frame update     void Start()     {         //这里是赋值整个变换矩阵  M=T*R*S         matrix1.SetTRS(transform.position, transform.rotation, transform.localScale);     }      // Update is called once per frame     void Update()     {         if (Input.GetKeyDown(KeyCode.Q))         {             OnMatrix4x4Move();         }         if (Input.GetKeyDown(KeyCode.W))         {             OnMatrix4x4Rotate();         }         if (Input.GetKeyDown(KeyCode.E))         {             OnMatrix4x4Scale();         }     }     /// <summary>     /// 矩阵平移,第四列是标记坐标信息的     /// </summary>     public void OnMatrix4x4Move()     {         Vector4 v4 = new Vector4(0, 0, 0, 1);          matrix1[0, 3] = MovePoint.x;         matrix1[1, 3] = MovePoint.y;         matrix1[2, 3] = MovePoint.z;          v4 = matrix1 * v4;         transform.position = new Vector3(v4.x, v4.y, v4.z);     }     /// <summary>     /// 矩阵旋转,这里是按本地旋转来的,例如先转x轴30再转Y,这里Y是基于X30度去转的     /// </summary>     public void OnMatrix4x4Rotate()     {         Matrix4x4 matrixRotateX = Matrix4x4.identity;         Matrix4x4 matrixRotateY = Matrix4x4.identity;         Matrix4x4 matrixRotateZ = Matrix4x4.identity;         Matrix4x4 matrixRotate = Matrix4x4.identity;       //  if (RotateData.x != 0)         {             matrixRotateX[1, 1] = Mathf.Cos(RotateData.x * Mathf.Deg2Rad);             matrixRotateX[2, 1] = Mathf.Sin(RotateData.x * Mathf.Deg2Rad);             matrixRotateX[1, 2] = -Mathf.Sin(RotateData.x * Mathf.Deg2Rad);             matrixRotateX[2, 2] = Mathf.Cos(RotateData.x * Mathf.Deg2Rad);         }        // if (RotateData.y != 0)         {             matrixRotateY[0, 0] = Mathf.Cos(RotateData.y * Mathf.Deg2Rad);             matrixRotateY[2, 0] = -Mathf.Sin(RotateData.y * Mathf.Deg2Rad);             matrixRotateY[0, 2] = Mathf.Sin(RotateData.y * Mathf.Deg2Rad);             matrixRotateY[2, 2] = Mathf.Cos(RotateData.y * Mathf.Deg2Rad);         }       //  if (RotateData.z != 0)         {             matrixRotateZ[0, 0] = Mathf.Cos(RotateData.z * Mathf.Deg2Rad);             matrixRotateZ[1, 0] = Mathf.Sin(RotateData.z * Mathf.Deg2Rad);             matrixRotateZ[0, 1] = -Mathf.Sin(RotateData.z * Mathf.Deg2Rad);             matrixRotateZ[1, 1] = Mathf.Cos(RotateData.z * Mathf.Deg2Rad);         }         matrixRotate = matrixRotateX * matrixRotateY * matrixRotateZ;          float vW = Mathf.Sqrt(matrixRotate.m00 + matrixRotate.m11 + matrixRotate.m22 + 1) / 2;         float w = vW * 4;         float vX = (matrixRotate.m21 - matrixRotate.m12) / w;         float vY = (matrixRotate.m02 - matrixRotate.m20) / w;         float vZ = (matrixRotate.m10 - matrixRotate.m01) / w;          transform.rotation= new Quaternion(vX, vY, vZ, vW);       }     /// <summary>     /// 矩阵缩放     /// </summary>     public void OnMatrix4x4Scale()     {         Matrix4x4 matrixScale = Matrix4x4.identity;         Vector4 v4 = new Vector4(1, 1, 1, 1);          matrixScale.m00 = ScaleData.x;         matrixScale.m11 = ScaleData.y;         matrixScale.m22 = ScaleData.z;          v4 = matrixScale * v4;         transform.localScale = new Vector3(v4.x, v4.y, v4.z);     } } 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!