阅读量:0
理论 基于模型的策略优化
修改了警告和报错
运行环境
Debian GNU/Linux 12 Python 3.9.19 torch 2.0.1 gym 0.26.2
运行代码
MBPO.py
#!/usr/bin/env python import gym from collections import namedtuple import itertools from itertools import count import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions.normal import Normal import numpy as np import collections import random import matplotlib.pyplot as plt class PolicyNet(torch.nn.Module): def __init__(self, state_dim, hidden_dim, action_dim, action_bound): super(PolicyNet, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc_mu = torch.nn.Linear(hidden_dim, action_dim) self.fc_std = torch.nn.Linear(hidden_dim, action_dim) self.action_bound = action_bound def forward(self, x): x = F.relu(self.fc1(x)) mu = self.fc_mu(x) std = F.softplus(self.fc_std(x)) dist = Normal(mu, std) normal_sample = dist.rsample() # rsample()是重参数化采样函数 log_prob = dist.log_prob(normal_sample) action = torch.tanh(normal_sample) # 计算tanh_normal分布的对数概率密度 log_prob = log_prob - torch.log(1 - torch.tanh(action).pow(2) + 1e-7) action = action * self.action_bound return action, log_prob class QValueNet(torch.nn.Module): def __init__(self, state_dim, hidden_dim, action_dim): super(QValueNet, self).__init__() self.fc1 = torch.nn.Linear(state_dim + action_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, 1) def forward(self, x, a): cat = torch.cat([x, a], dim=1) # 拼接状态和动作 x = F.relu(self.fc1(cat)) return self.fc2(x) device = torch.device("cuda") if torch.cuda.is_available() else torch.device( "cpu") class SAC: ''' 处理连续动作的SAC算法 ''' def __init__(self, state_dim, hidden_dim, action_dim, action_bound, actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma): self.actor = PolicyNet(state_dim, hidden_dim, action_dim, action_bound).to(device) # 策略网络 # 第一个Q网络 self.critic_1 = QValueNet(state_dim, hidden_dim, action_dim).to(device) # 第二个Q网络 self.critic_2 = QValueNet(state_dim, hidden_dim, action_dim).to(device) self.target_critic_1 = QValueNet(state_dim, hidden_dim, action_dim).to(device) # 第一个目标Q网络 self.target_critic_2 = QValueNet(state_dim, hidden_dim, action_dim).to(device) # 第二个目标Q网络 # 令目标Q网络的初始参数和Q网络一样 self.target_critic_1.load_state_dict(self.critic_1.state_dict()) self.target_critic_2.load_state_dict(self.critic_2.state_dict()) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr) self.critic_1_optimizer = torch.optim.Adam(self.critic_1.parameters(), lr=critic_lr) self.critic_2_optimizer = torch.optim.Adam(self.critic_2.parameters(), lr=critic_lr) # 使用alpha的log值,可以使训练结果比较稳定 self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float) self.log_alpha.requires_grad = True # 可以对alpha求梯度 self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=alpha_lr) self.target_entropy = target_entropy # 目标熵的大小 self.gamma = gamma self.tau = tau def take_action(self, state): state = torch.tensor(np.array([state]), dtype=torch.float).to(device) action = self.actor(state)[0] return [action.item()] def calc_target(self, rewards, next_states, dones): # 计算目标Q值 next_actions, log_prob = self.actor(next_states) entropy = -log_prob q1_value = self.target_critic_1(next_states, next_actions) q2_value = self.target_critic_2(next_states, next_actions) next_value = torch.min(q1_value, q2_value) + self.log_alpha.exp() * entropy td_target = rewards + self.gamma * next_value * (1 - dones) return td_target def soft_update(self, net, target_net): for param_target, param in zip(target_net.parameters(), net.parameters()): param_target.data.copy_(param_target.data * (1.0 - self.tau) + param.data * self.tau) def update(self, transition_dict): states = torch.tensor(transition_dict['states'], dtype=torch.float).to(device) actions = torch.tensor(transition_dict['actions'], dtype=torch.float).view(-1, 1).to(device) rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(device) next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(device) dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1, 1).to(device) rewards = (rewards + 8.0) / 8.0 # 对倒立摆环境的奖励进行重塑 # 更新两个Q网络 td_target = self.calc_target(rewards, next_states, dones) critic_1_loss = torch.mean( F.mse_loss(self.critic_1(states, actions), td_target.detach())) critic_2_loss = torch.mean( F.mse_loss(self.critic_2(states, actions), td_target.detach())) self.critic_1_optimizer.zero_grad() critic_1_loss.backward() self.critic_1_optimizer.step() self.critic_2_optimizer.zero_grad() critic_2_loss.backward() self.critic_2_optimizer.step() # 更新策略网络 new_actions, log_prob = self.actor(states) entropy = -log_prob q1_value = self.critic_1(states, new_actions) q2_value = self.critic_2(states, new_actions) actor_loss = torch.mean(-self.log_alpha.exp() * entropy - torch.min(q1_value, q2_value)) self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # 更新alpha值 alpha_loss = torch.mean( (entropy - target_entropy).detach() * self.log_alpha.exp()) self.log_alpha_optimizer.zero_grad() alpha_loss.backward() self.log_alpha_optimizer.step() self.soft_update(self.critic_1, self.target_critic_1) self.soft_update(self.critic_2, self.target_critic_2) class Swish(nn.Module): ''' Swish激活函数 ''' def __init__(self): super(Swish, self).__init__() def forward(self, x): return x * torch.sigmoid(x) def init_weights(m): ''' 初始化模型权重 ''' def truncated_normal_init(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = (t < mean - 2 * std) | (t > mean + 2 * std) if not torch.sum(cond): break t = torch.where( cond, torch.nn.init.normal_(torch.ones(t.shape, device=device), mean=mean, std=std), t) return t if type(m) == nn.Linear or isinstance(m, FCLayer): truncated_normal_init(m.weight, std=1 / (2 * np.sqrt(m._input_dim))) m.bias.data.fill_(0.0) class FCLayer(nn.Module): ''' 集成之后的全连接层 ''' def __init__(self, input_dim, output_dim, ensemble_size, activation): super(FCLayer, self).__init__() self._input_dim, self._output_dim = input_dim, output_dim self.weight = nn.Parameter( torch.Tensor(ensemble_size, input_dim, output_dim).to(device)) self._activation = activation self.bias = nn.Parameter( torch.Tensor(ensemble_size, output_dim).to(device)) def forward(self, x): return self._activation( torch.add(torch.bmm(x, self.weight), self.bias[:, None, :])) class EnsembleModel(nn.Module): ''' 环境模型集成 ''' def __init__(self, state_dim, action_dim, model_alpha, ensemble_size=5, learning_rate=1e-3): super(EnsembleModel, self).__init__() # 输出包括均值和方差,因此是状态与奖励维度之和的两倍 self._output_dim = (state_dim + 1) * 2 self._model_alpha = model_alpha # 模型损失函数中加权时的权重 self._max_logvar = nn.Parameter((torch.ones( (1, self._output_dim // 2)).float() / 2).to(device), requires_grad=False) self._min_logvar = nn.Parameter((-torch.ones( (1, self._output_dim // 2)).float() * 10).to(device), requires_grad=False) self.layer1 = FCLayer(state_dim + action_dim, 200, ensemble_size, Swish()) self.layer2 = FCLayer(200, 200, ensemble_size, Swish()) self.layer3 = FCLayer(200, 200, ensemble_size, Swish()) self.layer4 = FCLayer(200, 200, ensemble_size, Swish()) self.layer5 = FCLayer(200, self._output_dim, ensemble_size, nn.Identity()) self.apply(init_weights) # 初始化环境模型中的参数 self.optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate) def forward(self, x, return_log_var=False): ret = self.layer5(self.layer4(self.layer3(self.layer2( self.layer1(x))))) mean = ret[:, :, :self._output_dim // 2] # 在PETS算法中,将方差控制在最小值和最大值之间 logvar = self._max_logvar - F.softplus( self._max_logvar - ret[:, :, self._output_dim // 2:]) logvar = self._min_logvar + F.softplus(logvar - self._min_logvar) return mean, logvar if return_log_var else torch.exp(logvar) def loss(self, mean, logvar, labels, use_var_loss=True): inverse_var = torch.exp(-logvar) if use_var_loss: mse_loss = torch.mean(torch.mean(torch.pow(mean - labels, 2) * inverse_var, dim=-1), dim=-1) var_loss = torch.mean(torch.mean(logvar, dim=-1), dim=-1) total_loss = torch.sum(mse_loss) + torch.sum(var_loss) else: mse_loss = torch.mean(torch.pow(mean - labels, 2), dim=(1, 2)) total_loss = torch.sum(mse_loss) return total_loss, mse_loss def train(self, loss): self.optimizer.zero_grad() loss += self._model_alpha * torch.sum( self._max_logvar) - self._model_alpha * torch.sum(self._min_logvar) loss.backward() self.optimizer.step() class EnsembleDynamicsModel: ''' 环境模型集成,加入精细化的训练 ''' def __init__(self, state_dim, action_dim, model_alpha=0.01, num_network=5): self._num_network = num_network self._state_dim, self._action_dim = state_dim, action_dim self.model = EnsembleModel(state_dim, action_dim, model_alpha, ensemble_size=num_network) self._epoch_since_last_update = 0 def train(self, inputs, labels, batch_size=64, holdout_ratio=0.1, max_iter=20): # 设置训练集与验证集 permutation = np.random.permutation(inputs.shape[0]) inputs, labels = inputs[permutation], labels[permutation] num_holdout = int(inputs.shape[0] * holdout_ratio) train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:] holdout_inputs, holdout_labels = inputs[: num_holdout], labels[: num_holdout] holdout_inputs = torch.from_numpy(holdout_inputs).float().to(device) holdout_labels = torch.from_numpy(holdout_labels).float().to(device) holdout_inputs = holdout_inputs[None, :, :].repeat( [self._num_network, 1, 1]) holdout_labels = holdout_labels[None, :, :].repeat( [self._num_network, 1, 1]) # 保留最好的结果 self._snapshots = {i: (None, 1e10) for i in range(self._num_network)} for epoch in itertools.count(): # 定义每一个网络的训练数据 train_index = np.vstack([ np.random.permutation(train_inputs.shape[0]) for _ in range(self._num_network) ]) # 所有真实数据都用来训练 for batch_start_pos in range(0, train_inputs.shape[0], batch_size): batch_index = train_index[:, batch_start_pos:batch_start_pos + batch_size] train_input = torch.from_numpy( train_inputs[batch_index]).float().to(device) train_label = torch.from_numpy( train_labels[batch_index]).float().to(device) mean, logvar = self.model(train_input, return_log_var=True) loss, _ = self.model.loss(mean, logvar, train_label) self.model.train(loss) with torch.no_grad(): mean, logvar = self.model(holdout_inputs, return_log_var=True) _, holdout_losses = self.model.loss(mean, logvar, holdout_labels, use_var_loss=False) holdout_losses = holdout_losses.cpu() break_condition = self._save_best(epoch, holdout_losses) if break_condition or epoch > max_iter: # 结束训练 break def _save_best(self, epoch, losses, threshold=0.1): updated = False for i in range(len(losses)): current = losses[i] _, best = self._snapshots[i] improvement = (best - current) / best if improvement > threshold: self._snapshots[i] = (epoch, current) updated = True self._epoch_since_last_update = 0 if updated else self._epoch_since_last_update + 1 return self._epoch_since_last_update > 5 def predict(self, inputs, batch_size=64): inputs = np.tile(inputs, (self._num_network, 1, 1)) inputs = torch.tensor(inputs, dtype=torch.float).to(device) mean, var = self.model(inputs, return_log_var=False) return mean.detach().cpu().numpy(), var.detach().cpu().numpy() class FakeEnv: def __init__(self, model): self.model = model def step(self, obs, act): inputs = np.concatenate((obs, act), axis=-1) ensemble_model_means, ensemble_model_vars = self.model.predict(inputs) ensemble_model_means[:, :, 1:] += obs ensemble_model_stds = np.sqrt(ensemble_model_vars) ensemble_samples = ensemble_model_means + np.random.normal( size=ensemble_model_means.shape) * ensemble_model_stds num_models, batch_size, _ = ensemble_model_means.shape models_to_use = np.random.choice( [i for i in range(self.model._num_network)], size=batch_size) batch_inds = np.arange(0, batch_size) samples = ensemble_samples[models_to_use, batch_inds] rewards, next_obs = samples[:, :1][0][0], samples[:, 1:][0] return rewards, next_obs class MBPO: def __init__(self, env, agent, fake_env, env_pool, model_pool, rollout_length, rollout_batch_size, real_ratio, num_episode): self.env = env self.agent = agent self.fake_env = fake_env self.env_pool = env_pool self.model_pool = model_pool self.rollout_length = rollout_length self.rollout_batch_size = rollout_batch_size self.real_ratio = real_ratio self.num_episode = num_episode def rollout_model(self): observations, _, _, _, _ = self.env_pool.sample( self.rollout_batch_size) for obs in observations: for i in range(self.rollout_length): action = self.agent.take_action(obs) reward, next_obs = self.fake_env.step(obs, action) self.model_pool.add(obs, action, reward, next_obs, False) obs = next_obs def update_agent(self, policy_train_batch_size=64): env_batch_size = int(policy_train_batch_size * self.real_ratio) model_batch_size = policy_train_batch_size - env_batch_size for epoch in range(10): env_obs, env_action, env_reward, env_next_obs, env_done = self.env_pool.sample( env_batch_size) if self.model_pool.size() > 0: model_obs, model_action, model_reward, model_next_obs, model_done = self.model_pool.sample( model_batch_size) obs = np.concatenate((env_obs, model_obs), axis=0) action = np.concatenate((env_action, model_action), axis=0) next_obs = np.concatenate((env_next_obs, model_next_obs), axis=0) reward = np.concatenate((env_reward, model_reward), axis=0) done = np.concatenate((env_done, model_done), axis=0) else: obs, action, next_obs, reward, done = env_obs, env_action, env_next_obs, env_reward, env_done transition_dict = { 'states': obs, 'actions': action, 'next_states': next_obs, 'rewards': reward, 'dones': done } self.agent.update(transition_dict) def train_model(self): obs, action, reward, next_obs, done = self.env_pool.return_all_samples( ) inputs = np.concatenate((obs, action), axis=-1) reward = np.array(reward) labels = np.concatenate( (np.reshape(reward, (reward.shape[0], -1)), next_obs - obs), axis=-1) self.fake_env.model.train(inputs, labels) def explore(self): obs, done, episode_return = self.env.reset()[0], False, 0 num = 0 while not done and num < 10000: action = self.agent.take_action(obs) next_obs, reward, done, _, __ = self.env.step(action) self.env_pool.add(obs, action, reward, next_obs, done) obs = next_obs episode_return += reward num = num + 1 return episode_return def train(self): return_list = [] explore_return = self.explore() # 随机探索采取数据 print('episode: 1, return: %d' % explore_return) return_list.append(explore_return) for i_episode in range(self.num_episode - 1): obs, done, episode_return = self.env.reset()[0], False, 0 step = 0 while not done: if step % 50 == 0: print(step) self.train_model() self.rollout_model() if step >= 100: break action = self.agent.take_action(obs) next_obs, reward, done, _, __ = self.env.step(action) self.env_pool.add(obs, action, reward, next_obs, done) obs = next_obs episode_return += reward self.update_agent() step += 1 return_list.append(episode_return) print('episode: %d, return: %d' % (i_episode + 2, episode_return)) return return_list class ReplayBuffer: def __init__(self, capacity): self.buffer = collections.deque(maxlen=capacity) def add(self, state, action, reward, next_state, done): self.buffer.append((state, action, reward, next_state, done)) def size(self): return len(self.buffer) def sample(self, batch_size): if batch_size > len(self.buffer): return self.return_all_samples() else: transitions = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = zip(*transitions) return np.array(state), action, reward, np.array(next_state), done def return_all_samples(self): all_transitions = list(self.buffer) state, action, reward, next_state, done = zip(*all_transitions) return np.array(state), action, reward, np.array(next_state), done real_ratio = 0.5 env_name = 'Pendulum-v1' env = gym.make(env_name) num_episodes = 20 actor_lr = 5e-4 critic_lr = 5e-3 alpha_lr = 1e-3 hidden_dim = 128 gamma = 0.98 tau = 0.005 # 软更新参数 buffer_size = 10000 target_entropy = -1 model_alpha = 0.01 # 模型损失函数中的加权权重 state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] action_bound = env.action_space.high[0] # 动作最大值 rollout_batch_size = 1000 rollout_length = 1 # 推演长度k,推荐更多尝试 model_pool_size = rollout_batch_size * rollout_length agent = SAC(state_dim, hidden_dim, action_dim, action_bound, actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma) model = EnsembleDynamicsModel(state_dim, action_dim, model_alpha) fake_env = FakeEnv(model) env_pool = ReplayBuffer(buffer_size) model_pool = ReplayBuffer(model_pool_size) mbpo = MBPO(env, agent, fake_env, env_pool, model_pool, rollout_length, rollout_batch_size, real_ratio, num_episodes) return_list = mbpo.train() episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('MBPO on {}'.format(env_name)) plt.show()