数据仓库面试题集锦(附答案和数仓知识体系)(1),2024年最新面试大厂ui

avatar
作者
猴君
阅读量:0

4)设计数仓分层架构

5)模型落地

6)数据治理

4、什么是数据中台?


数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。

数据中台是通过整合公司开发工具、打通全域数据、让数据持续为业务赋能,实现数据平台化、数据服务化和数据价值化。数据中台更加侧重于“复用”和“业务”。

5、数据中台、数据仓库、大数据平台、数据湖的关键区别是什么?


1)基础能力上的区别

数据平台:提供的是计算和存储能力

数据仓库:利用数据平台提供的计算和存储能力,在一套方法论的指导下建设的一整套的数据表

数据中台:包含了数据平台和数据仓库的所有内容,将其打包,并且以更加整合以及更加产品化的方式对外提供服务和价值

数据湖:一个存储企业各种各样原始数据的大型仓库,包括结构化和非结构化数据,其中湖里的数据可供存取、处理、分析和传输

2)业务能力上的区别

数据平台:为业务提供数据主要方式是提供数据集

数据仓库:相对具体的功能概念是存储和管理一个或多个主题数据的集合,为业务提供服务的方式主要是分析报表

数据中台:企业级的逻辑概念,体现企业数据产生价值的能力,为业务提供服务的主要方式是数据API

数据湖:数据仓库的数据来源

总的来说,数据中台距离业务更近,数据复用能力更强,能为业务提供速度更快的服务,数据中台在数据仓库和数据平台的基础上,将数据生产为一个个数据API服务,以更高效的方式提供给业务。数据中台可以建立在数据仓库和数据平台之上,是加速企业从数据到业务价值的过程的中间层。

6、大数据有哪些相关的系统?


数仓设计中心:按照主题域、业务过程,分层的设计方式,以维度建模作为基本理论依据,按照维度、度量设计模型,确保模型、字段有统一的命名规范

数据资产中心:梳理数据资产,基于数据血缘,数据的访问热度,做成本的治理

数据质量中心:通过丰富的稽查监控系统,对数据进行事后校验,确保问题数据第一时间被发现,避免下游的无效计算,分析数据的影响范围。

指标系统:管理指标的业务口径、计算逻辑和数据来源,通过流程化的方式,建立从指标需求、指标开发、指标发布的全套协作流程

数据地图:提供元数据的快速索引,数据字典、数据血缘、数据特征信息的查询,相当于元数据中心的门户。

7、如何建设数据中台?


数据中台在企业落地实践时,结合技术、产品、数据、服务、运营等方面,逐步开展相关工作

1)理现状:了解业务现状、数据现状、IT现状、现有的组织架构

2)定架构:确认业务架构、技术架构、应用架构、组织架构

3)建资产:建立贴近数据层、统一数仓层、标签数据层、应用数据层

4)用数据:对数据进行输出、应用

5)数据运营:持续运营、持续迭代

中台建设需要有全员共识,由管理层从上往下推进,由技术和业务人员去执行和落地是一个漫长的过程,在实施数据中台时,最困难的地方就是需要有人推动。

8、数据仓库最重要的是什么?


个人认为是数据集成和数据质量

企业的数据通常存储在多个异构数据库中,要进行分析,必须对数据进行一致性整合,整合后才能对数据进行分析挖掘出潜在的价值;

数据质量必须有保障,数据质量不过关,别人怎么会使用你的数据?

9、概念模型、逻辑模型、物理模型分别介绍一下?


1)概念模型CDM:概念模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,以数据类的方式描述企业级的数据需求

概念模型的内容包括重要的实体与实体之间的关系,在概念模型中不包含实体的属性,也不包含定义实体的主键

概念模型的目的是统一业务概念,作为业务人员和技术人员之间的沟通桥梁,确定不同实体之间的最高层次的关系

2)逻辑模型LDM:逻辑模型反映的是系统分析人员对数据存储的观点,是对概念模型的进一步分解和细化,逻辑模型是根据业务规则确定的,关于业务对象,业务对象的数据项以及业务对象之间关系的基本蓝图

逻辑模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理

逻辑模型的目标是尽可能详细的描述数据,并不考虑物理上如何实现

3)物理模型PDM:物理模型是在逻辑模型的基础上,考虑各种具体的技术实现因素,进行数据体系结构设计,真正实现数据在数据仓库中的存放

物理模型的内容包括确定所有的表和列,定义外键用确认表之间的关系,基于用户的需求可能要进行反范式化等内容

10、SCD常用的处理方式有哪些?


slowly changing dimensions 缓慢变化维度

常见的缓慢变化维处理方式有三种:

1)**直接覆盖:**不记录历史数据,薪数据覆盖旧数据

2)**新加一行数据(纵向扩展):**使用代理主键+生效失效时间或者是代理主键+生效失效标识(保存多条记录,直接新添一条记录,同时保留原有记录,并用单独的专用字段保存)

3)**新加两个字段(横向扩展):**一个是previous,一个是current,每次更新只更新这两个值,但是这样职能保留最近两次的变化(添加历史列,用不同的字段保存变化痕迹,因为只保存两次变化记录,使用与变化不超过两次的维度)

11、怎么理解元数据?


传送门:一篇文章搞懂数据仓库:元数据分类、元数据管理 —— 一篇文章搞懂数据仓库:元数据分类、元数据管理_不吃西红柿-CSDN博客

狭义来讲就是:元数据就用来描述数据的数据

广义来讲,除了业务逻辑直接读写处理的业务数据,所有其他用来维护整个系统运转所需要的数据,都可以认为是元数据

在数仓中,元数据可以帮助数仓人员方便找到他们所关系的数据,是描述数仓内部数据的结构和建立方法的数据。按照用途可分为:技术元数据、业务员数据

  • 技术元数据:存储关于数据仓库技术细节的数据,用于开发和管理数仓使用的数据

  • 业务元数据:从业务角度描述了数据仓库中的数据,提供介于使用者和实际系统之间的语义层,使不懂计算机技术的业务人员也能读懂数仓中的数据

元数据管理功能

  • 数据地图:以拓扑图的形式对数据系统的各类数据实体、数据处理过程元数据进行分层次的图形化展示,并通过不同层次的图形展现。

  • 元数据分析:血缘分析、影响分析、实体关联分析、实体差异分析、指标一致性分析。

  • 辅助应用优化:结合元数据分析功能,可以对数据系统的应用进行优化。

  • 辅助安全管理:采用合理的安全管理机制来保障系统的数据安全;对数据系统的数据访问和功能使用进行有效监控。

  • 于元数据的开发管理:通过元数据管理系统规范日常开发的工作流程(包括任务调度系统)。

12、数仓如何确定主题域?


主题是在较高层次上将数据进行综合、归类和分析利用的一个抽象概念,每一个主题基本对应一个宏观的分析领域,在逻辑意义上,他是对企业中某一宏观分析领域所涉及的分析对象。

面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整并且一致的描述,能刻画各个分析对象所涉及的企业各项数据,以及数据之间的联系。

主题域通常是联系较为机密的数据主题的集合,可以根据业务的关注度,将这些数据主题划分到不同的主题域(也就是说对某个主题进行分析后确定的主题的边界)。

关于主题域的划分,可以考虑几方面:

1、按照业务或者业务过程划分:比如一个靠销售广告位置的门户网站主题域可能会有广告域,客户域等,而广告域可能就会有广告的库存,销售分析、内部投放分析等主题;

2、根据需求方划分:比如需求方为财务部,就可以设定对应的财务主题域,而财务主题域里面可能就会有员工工资分析,投资回报比分析等主题;

3、按照功能或者应用划分::比如微信中的朋友圈数据域、群聊数据域等,而朋友圈数据域可能就会有用户动态信息主题、广告主题等;

4、按照部门划分:比如可能会有运营域、技术域等,运营域中可能会有工资支出分析、活动宣传效果分析等主题;

总而言之,切入的出发点逻辑不一样,就可以存在不同的划分逻辑。在建设过程中可采用迭代方式,不纠结于一次完成所有主题的抽象,可先从明确定义的主题开始,后续逐步归纳总结成自身行业的标准模型。

13、如何控制数据质量?


传送门:一篇文章搞懂数据仓库:数据治理(目的、方法、流程)——  一篇文章搞懂数据仓库:数据治理(目的、方法、流程)_不吃西红柿-CSDN博客_数据仓库 数据治理

1)校验机制,每天对比数据量,比如count(*),早发现,早修复

2)数据内容的比对,抽样对比

3)复盘、每月做一次全量

14、模型设计的思路?业务驱动?数据驱动?


构建数据仓库有两种方式:自上而下、自下而上

Bill Inmon推崇自上而下的方式,一个企业建立唯一的数据中心,数据是经过整合、清洗、去掉脏数据、标准的、能够提供统一的视图。要从整个企业的环境入手,建立数据仓库,要做很全面的设计。偏数据驱动

Ralph Kimball推崇自下而上的方式,认为数据仓库应该按照实际的应用需求,架子啊需要的数据,不需要的数据不要加载到数据仓库中。这种方式建设周期短,用户能很快看到结果。偏业务驱动

15、为什么需要数据仓库建模?


数仓建模需要按照一定的数据模型,对整个企业的数据进行采集,整理,提供跨部门、完全一致的报表数据。

合适的数据模型,对于大数据处理来讲,可以获得得更好的性能、成本、效率和质量。良好的模型可以帮助我们快速查询数据,减少不必要的数据冗余,提高用户的使用效率。

数据建模进行全方面的业务梳理,改进业务流程,消灭信息孤岛,更好的推进数仓系统的建设。

16、数据仓库建模方法有哪些?


自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-u7X6aRuW-1712955152040)]

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!