llama-agentic-system

avatar
作者
筋斗云
阅读量:0

文章目录


一、关于 llama-agentic-system


llama-agentic-system 是 Llama Stack APIs 的 Agentic 组件

此repo允许您将 Llama 3.1作为能够执行“代理”任务的系统运行,例如:

  • 分解任务并执行多步骤推理。
  • 使用工具的能力
    • 内置:模型内置知识的工具,如搜索或代码解释器
    • 零样本:模型可以学习使用以前看不见的上下文工具定义调用工具

此外,我们希望将安全评估从 模型级别 转移到整个系统级别。这允许底层模型保持广泛的可操纵性,并适应需要不同级别安全保护的用例。

其中一个安全保护由Llama守卫提供,默认情况下,Llama守卫同时用于输入和输出过滤,但是系统可以配置为修改这个默认设置,例如,在经常观察到拒绝良性提示的情况下,建议使用Llama守卫进行输出过滤,只要满足您的使用案例的安全要求。

注:API仍在发展中,可能会发生变化。请随意构建和试验,但请不要依靠它的稳定性!


二、LLama代理系统安装和设置指南


1、创建Conda环境

使用所需的Python版本创建一个新的conda环境:

ENV=agentic_env with-proxy conda create -n $ENV python=3.10 cd <path-to-llama-agentic-system-repo> conda activate $ENV 

请注意,您也可以使用pip 简单地将其安装为python

pip install llama-agentic-system 

2、运行FP8

如果你想运行即时fp8量化,你需要fbgemm-gpu包,它需要 torch>=2.4.0(目前只在 nightly ,但很快就会发布…)。

你可以在llama工具链存储库中找到 fp8_requirements : https://github.com/meta-llama/llama-toolchain/blob/main/fp8_requirements.txt

ENV=fp8_env conda create -n $ENV python=3.10 conda activate $ENV  pip3 install -r fp8_requirements.txt 


3、作为包安装

使用pip安装包:

pip install -e . 

这将根据需要安装所有依赖项。

我们还需要冒泡包装来运行代码执行器作为代理的工具。 安装 bubblewrap


4、测试安装

通过运行以下命令测试安装:

llama --help 

这将打印CLI帮助消息。

usage: llama [-h] {download,inference,model,agentic_system} ...  Welcome to the LLama cli  options:   -h, --help            show this help message and exit  subcommands:   {download,inference,model,agentic_system} 

此Llama CLI将帮助您执行以下操作

  • 从HuggingFace下载最新的Llama3.1 模型
  • 在本地计算机上配置并启动推理服务器
  • 配置和运行展示使用Llama Stack API构建的代理系统的应用程序。

让我们一步一步地完成设置过程,


5、下载检查点(或使用现有模型)

使用以下命令下载所需的检查点:

# download the 8B model, this can be run on a single GPU llama download llhf/Meta-Llama-3.1-8B-Instruct  # you can also get the 70B model, this will require 8 GPUs however llama download llhf/Meta-Llama-3.1-70B-Instruct  # llama-agents have safety enabled by default. For this you will need # safety models -- Llama-Guard and Prompt-Guard llama download llhf/Prompt-Guard-86M --ignore-patterns original llama download llhf/Llama-Guard-3-8B --ignore-patterns original 

**重要提示:**设置您的环境变量HF_TOKEN或将--hf-token传入命令以验证您的访问权限。

您可以在 https://huggingface.co/settings/tokens 找到您的 token。

提示:llama download的默认运行方式是--ignore-patterns *.safetensors,因为我们使用original文件夹中的.pth文件。

然而,对于 Llama Guard 和 Prompt Guard,我们需要安全传感器。

因此,请确保使用--ignore-patterns original运行,以便下载安全传感器并忽略.pth文件。


6、配置推理服务器配置

通过运行以下命令配置推理服务器配置:

llama inference configure 

按照系统提示填写 checkpoints、model_paralle_size等。

当被要求提供模型的检查点目录时,请提供上一步中的本地模型路径。

这将配置写入 ~/.llama/configs/inference.yaml.

提示: 请注意,当您下载HF checkpoints 时,我们依赖于存储在 original 文件夹中的原始 .pth 文件。因此,如有必要,请确保对检查点目录使用 <path>/original


您应该看到输出如下

YAML configuration has been written to <HOME_DIR>/.llama/configs/inference.yaml 

所有配置以及模型都存储在~/.llama


7、运行推理服务器

通过运行以下命令运行推理服务器:

llama inference start 

这将启动默认运行模型localhost:5000推理服务器。

**提示:**推理配置位于~/.llama/configs/inference.yaml中。根据需要随意增加max_seq_len或更改检查点目录。


输出形式:

Loading config from : ~/.llama/configs/inference.yaml Yaml config: ------------------------ inference_config:   impl_config:     impl_type: inline     checkpoint_config:       checkpoint:         checkpoint_type: pytorch         checkpoint_dir: <HOMEDIR>/local/checkpoints/Meta-Llama-3.1-8B-Instruct-20240710150000//         tokenizer_path: <HOMEDIR>/local/checkpoints/Meta-Llama-3.1-8B-Instruct-20240710150000//tokenizer.model         model_parallel_size: 1         quantization_format: bf16     quantization: null     torch_seed: null     max_seq_len: 2048     max_batch_size: 1  ------------------------ Listening on :::5000 INFO:     Started server process [2412753] INFO:     Waiting for application startup. > initializing model parallel with size 1 > initializing ddp with size 1 > initializing pipeline with size 1  Loaded in 13.86 seconds NCCL version 2.20.5+cuda12.4 Finished model load YES READY INFO:     Application startup complete. INFO:     Uvicorn running on http://[::]:5000 (Press CTRL+C to quit) 

此服务器在本地运行Llama模型。

提示: 您可能需要使用 -disable-ipv6 flag 来禁用ipv6支持

现在已经设置了推理服务器,接下来就是使用 llama-agentic-system API 运行代理应用程序。

我们构建了示例脚本、笔记本和UI聊天界面(使用Mesop!)来帮助您入门。


8、配置代理系统

通过运行以下命令配置代理系统配置:

llama agentic_system configure 

按照系统提示操作。当请求模型检查点目录时,提供上一步的本地模型路径。

这会将配置写入~/.llama/configs/agentic_system/inline.yaml

这个配置看起来像这样

agentic_system_config:   impl_config:     impl_type: inline     inference_config:       impl_config:         impl_type: remote         # the url to the inference server         url: http://localhost:5000   # Safety shields   safety_config:     llama_guard_shield:       model_dir: <path>       excluded_categories: []       disable_input_check: False       disable_output_check: False     prompt_guard_shield:       model_dir: <path>  # Use this config to change the sampling params # when interacting with an agent instance sampling_params:   temperature: 0.0   strategy: "top_p"   top_p: 0.95   top_k: 0 

9、为工具添加API密钥

在repo根目录中,为工具添加API密钥。模型支持的工具需要API密钥–

  • 勇于网络搜索(https://api.search.brave.com/register)
  • Wolfram 用于数学运算(https://developer.wolframalpha.com/)

提示如果您没有API密钥,您仍然可以在没有模型访问工具的情况下运行应用程序。


10、启动应用程序并与服务器交互

启动应用程序(内联)并通过运行以下命令与之交互:

mesop app/main.py 

这将启动一个mesop应用程序,你可以去localhost:32123玩聊天界面。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传


类似于这个主应用程序,您也可以尝试其他变体

  • mesop app/chat_with_custom_tools.py 展示如何集成自定义工具
  • mesop app/chat_moderation_with_llama_guard.py 展示如何修改应用程序以充当聊天版主以确保安全

提示保持推理服务器后台运行以加快迭代周期


11、启动一个可以创建代理并与推理服务器交互的脚本

注意:确保推理服务器仍在运行。

cd <path-to-llama-agentic-ssytem> conda activate $ENV llama inference start  # If not already started  python examples/scripts/vacation.py localhost 5000 

您应该会看到表单标准输出的输出——

Environment: ipython Tools: brave_search, wolfram_alpha, photogen  Cutting Knowledge Date: December 2023 Today Date: 23 July 2024  User> I am planning a trip to Switzerland, what are the top 3 places to visit? Final Llama Guard response shield_type=<BuiltinShield.llama_guard: 'llama_guard'> is_violation=False violation_type=None violation_return_message=None Ran PromptGuardShield and got Scores: Embedded: 0.9999765157699585, Malicious: 1.1110752893728204e-05 StepType.shield_call> No Violation role='user' content='I am planning a trip to Switzerland, what are the top 3 places to visit?' StepType.inference> Switzerland is a beautiful country with a rich history, culture, and natural beauty. Here are three must-visit places to add to your itinerary: .... 

提示您可以选择在脚本中执行--disable-safety操作,以避免一直运行安全防护。


2024-07-24(三)

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!