1. 主题相关
1.1 创建主题
kafka-topics.sh --create --bootstrap-server [服务器地址] --replication-factor [副本数] --partitions [分区数] --topic [主题名]
liber@liber-VMware-Virtual-Platform:/home/zookeeper$ docker-compose exec kafka /bin/bash #进入kafka容器
bash-5.1# kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 3 --topic liber #创建一个主题名叫liber
Created topic liber.注:具有 1 个副本和 3 个分区
在 Kafka 中,分区是主题的子集,每个主题可以分为多个分区。每个分区都是一个独立的日志序列,可以被存储在集群中的不同服务器上。
每个分区有一个领导者副本,负责处理所有读取和写入请求。领导者副本将写入的数据同步到其他副本。除了领导者副本外,其他副本称为追随者副本。它们从领导者那里复制数据,并不直接处理客户端的读写请求。
1.2 查询主题
kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic [主题名]
bash-5.1# kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic liber
Topic: liber TopicId: tTzq8pWZTIekVoXT35QPWg PartitionCount: 3 ReplicationFactor: 1 Configs: segment.bytes=1073741824
Topic: liber Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: liber Partition: 1 Leader: 2 Replicas: 2 Isr: 2
Topic: liber Partition: 2 Leader: 3 Replicas: 3 Isr: 3
注:如果省略--topic
参数,则列出所有主题的详细信息。
1.3 修改主题
kafka-topics.sh --alter --bootstrap-server localhost:9092 --topic [主题名] --partitions [新的分区数]
bash-5.1# kafka-topics.sh --alter --bootstrap-server localhost:9092 --topic liber --partitions 5
bash-5.1# kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic liber
Topic: liber TopicId: tTzq8pWZTIekVoXT35QPWg PartitionCount: 5 ReplicationFactor: 1 Configs: segment.bytes=1073741824
Topic: liber Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: liber Partition: 1 Leader: 2 Replicas: 2 Isr: 2
Topic: liber Partition: 2 Leader: 3 Replicas: 3 Isr: 3
Topic: liber Partition: 3 Leader: 1 Replicas: 1 Isr: 1
Topic: liber Partition: 4 Leader: 2 Replicas: 2 Isr: 2注:修改liber的分区数到 5
1.4 删除主题
kafka-topics.sh --delete --bootstrap-server localhost:9092 --topic [主题名]
bash-5.1# kafka-topics.sh --delete --bootstrap-server localhost:9092 --topic liber
bash-5.1# kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic liber
Error while executing topic command : Topic 'liber' does not exist as expected
[2024-07-22 02:16:33,325] ERROR java.lang.IllegalArgumentException: Topic 'liber' does not exist as expected
at kafka.admin.TopicCommand$.kafka$admin$TopicCommand$$ensureTopicExists(TopicCommand.scala:542)
at kafka.admin.TopicCommand$AdminClientTopicService.describeTopic(TopicCommand.scala:317)
at kafka.admin.TopicCommand$.main(TopicCommand.scala:69)
at kafka.admin.TopicCommand.main(TopicCommand.scala)
(kafka.admin.TopicCommand$)
2. 生产者
在 Apache Kafka中,生产者(Producer)是负责将数据发送到指定Kafka主题(Topics)的客户端应用程序。生产者可以灵活地发送消息到一个或多个Kafka主题,支持各种发布模式和消息确认机制,以确保消息的可靠性和持久性。
在 Apache Kafka 的上下文中,broker地址列表指 Kafka 集群中一组或多组 broker(服务器)的地址。这些地址用于初始化生产者(producers)、消费者(consumers)、以及其他客户端连接到Kafka集群的过程。
kafka-console-producer.sh --broker-list [broker地址列表] --topic [主题名]
bash-5.1# kafka-console-producer.sh --broker-list localhost:9092 --topic liber
>This is my first event
>This is my second event注:
Ctrl-C
停止生产者客户端。
3. 消费者
在 Apache Kafka中,消费者(Consumer)是从Kafka主题(Topics)中读取数据的客户端应用。消费者可以独立使用,或者作为一个消费者群组(Consumer Group)的一部分来运行。使用消费者群组可以有效地在多个消费者实例间分配主题的分区(Partitions),从而提升数据处理的并行性和效率。
kafka-console-consumer.sh --bootstrap-server [broker地址列表] --topic [主题名] [其他可选参数]
--from-beginning
:如果加上这个参数,消费者将从主题的开始读取所有消息,而不是只读取新消息。--group
:指定消费者群组的ID,用于在多个消费者间共享主题的分区。
bash-5.1# kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic liber --from-beginning
This is my first event
This is my second event注:
Ctrl-C
停止消费者客户端。
4. 消费者组
4.2 隐式创建组
kafka-console-consumer.sh --bootstrap-server [broker地址列表] --topic [主题名] --group [新的或现有的消费者组ID]
消费者组的创建是隐式进行的,当一个或多个消费者客户端连接到 Kafka 并订阅主题时自动完成的。每个消费者在连接时会指定一个组ID,这个组ID在所有消费者中应该是一致的,以表示他们属于同一个消费者组。
bash-5.1# kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic liber --group example_group #创建名为example_group的用户组
注:Ctrl-C
停止等待。
4.1 查询消费组(所有)
kafka-consumer-groups.sh --bootstrap-server [broker地址列表] --list
bash-5.1# kafka-consumer-groups.sh --bootstrap-server localhost:9092 --list
example_group
KMOffsetCache-cmak
4.2 查询消费组(精确)
kafka-consumer-groups.sh --bootstrap-server [broker地址列表] --describe --group [消费者组名]
bash-5.1# kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --group example_group
Consumer group 'example_group' has no active members.
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
example_group liber 0 1 1 0 - - -
example_group liber 1 0 0 0 - - -
example_group liber 2 1 1 0 - - -bash-5.1# kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --group KMOffsetCache-cmak
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
KMOffsetCache-cmak __consumer_offsets 22 - 0 - consumer-KMOffsetCache-cmak-1-3829d91b-249f-491c-8d69-446462d60d61 /192.168.186.77 consumer-KMOffsetCache-cmak-1
KMOffsetCache-cmak __consumer_offsets 30 - 0 - consumer-KMOffsetCache-cmak-1-3829d91b-249f-491c-8d69-446462d60d61 /192.168.186.77 consumer-KMOffsetCache-cmak-1
KMOffsetCache-cmak __consumer_offsets 25 - 0 - consumer-KMOffsetCache-cmak-1-3829d91b-249f-491c-8d69-446462d60d61 /192.168.186.77 consumer-KMOffsetCache-cmak-1
KMOffsetCache-cmak __consumer_offsets 35 - 0 - consumer-KMOffsetCache-cmak-1-3829d91b-249f-491c-8d69-446462d60d61 /192.168.186.77 consumer-KMOffsetCache-cmak-1
KMOffsetCache-cmak __consumer_offsets 37 - 0 - consumer-KMOffsetCache-cmak-1-3829d91b-249f-491c-8d69-446462d60d61 /192.168.186.77 consumer-KMOffsetCache-cmak-1
KMOffsetCache-cmak __consumer_offsets 38 - 0 - consumer-KMOffsetCache-cmak-1-3829d91b-249f-491c-8d69-446462d60d61 /192.168.186.77 consumer-KMOffsetCache-cmak-1
4.3 删除消费组
kafka-consumer-groups.sh --bootstrap-server [broker地址列表] --delete --group [消费者组名]
bash-5.1# kafka-consumer-groups.sh --bootstrap-server localhost:9092 --delete --group example_group
Deletion of requested consumer groups ('example_group') was successful.
5. 部分配置(参考)
# Kafka Broker 的基本设置 broker.id=1 # 每个 Kafka broker 需要一个唯一的 ID。在 Kafka 集群中,每个节点都必须有不同的 ID。 port=9092 # Kafka 服务端监听的端口,客户端通过此端口与 Kafka 通信。 num.network.threads=3 # 处理网络请求的线程数,比如接受连接、接受请求、发送响应。调整此值以匹配你的服务器的网络I/O性能。 num.io.threads=8 # 服务器用于读写操作的线程数。这应该与你的磁盘数量相匹配,以平衡磁盘I/O负载。 socket.send.buffer.bytes=102400 socket.receive.buffer.bytes=102400 # Socket 发送和接收缓冲区的大小。增加这些值可以提高网络性能,但会增加内存消耗。 log.dirs=/tmp/kafka-logs # Kafka 存储消息和日志的目录。可以指定多个目录,Kafka 会平衡跨这些目录的数据。 num.partitions=1 # Kafka 创建新主题时默认的分区数。分区是并行处理的基础,更多的分区意味着更高的并发。 # 数据保留策略 log.retention.hours=168 # Kafka 日志文件保留的最长时间,单位为小时。超过这个时间的日志文件将被自动删除。 log.segment.bytes=1073741824 # Kafka 日志段的大小。当日志文件达到这个大小时,会新建一个日志文件。 log.retention.check.interval.ms=300000 # Kafka 检查日志文件是否需要删除的频率,单位为毫秒。 # 副本和同步 default.replication.factor=1 # 主题的默认副本数。副本数决定了数据的冗余程度和可用性。 min.insync.replicas=1 # 在认为生产请求成功之前,必须有这么多副本同步了数据。 # ZooKeeper 配置 zookeeper.connect=localhost:2181 # Kafka 使用 ZooKeeper 来维护集群状态,如存储所有broker、主题等信息。此项配置ZooKeeper服务的连接信息。 zookeeper.connection.timeout.ms=6000 # 连接到 ZooKeeper 的超时时间,单位为毫秒。 # 日志压缩和清理 log.cleanup.policy=delete # 日志的清理策略。"delete" 根据时间或文件大小删除日志;"compact" 根据键合并日志。 # 安全性设置 listeners=PLAINTEXT://:9092 # 定义 Kafka 服务的监听地址,支持 PLAINTEXT、SSL 等多种协议。 # 高级SSL和SASL配置 # ssl.keystore.location=/path/to/keystore.jks # ssl.keystore.password=your-keystore-pass # ssl.key.password=your-key-pass # sasl.enabled.mechanisms=PLAIN # sasl.mechanism.inter.broker.protocol=PLAIN # 配置 SSL 和 SASL,用于安全的客户端和 broker 之间的通信。
6. 简单案例(秒杀)
6.1 创建主题
bash-5.1# kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 3 --topic product
Created topic product.
bash-5.1# kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic product
Topic: product TopicId: JdkFmgvOQlKBCCsCVDTo1Q PartitionCount: 3 ReplicationFactor: 1 Configs: segment.bytes=1073741824
Topic: product Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: product Partition: 1 Leader: 2 Replicas: 2 Isr: 2
Topic: product Partition: 2 Leader: 3 Replicas: 3 Isr: 3
6.2 项目结构
6.3 Maven依赖
<parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.3.2</version> <relativePath/> <!-- lookup parent from repository --> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency> <dependency> <groupId>com.mysql</groupId> <artifactId>mysql-connector-j</artifactId> <version>8.3.0</version> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> </dependencies>
6.4 数据库操作
create database orders; use orders; CREATE TABLE products ( product_id BIGINT AUTO_INCREMENT PRIMARY KEY, product_name VARCHAR(255) NOT NULL, price DECIMAL(10, 2) NOT NULL, stock INT NOT NULL, description TEXT, version INT NOT NULL DEFAULT 0 ); INSERT INTO products (products.product_id,product_name, price, stock, description) VALUES (1,'大白菜', 5.99, 200, '新鲜的大白菜,来自农民的直供'), (2,'红富士苹果', 3.50, 150, '甜美多汁的红富士苹果,一箱包含20个'), (3,'五花肉', 45.00, 100, '优质五花肉,适合各种烹饪方式'), (4,'东北大米', 60.00, 300, '东北粳米,粒粒香甜,适合日常食用'), (5,'速溶咖啡', 70.00, 80, '进口速溶咖啡,简单快捷,口味纯正');
6.5 application.yml
spring: application: name: spring_kafka datasource: url: jdbc:mysql://localhost:3306/orders?useSSL=false&serverTimezone=UTC username: root password: 123456 driver-class-name: com.mysql.cj.jdbc.Driver jpa: hibernate: ddl-auto: update show-sql: true open-in-view: false kafka: consumer: bootstrap-servers: 192.168.186.77:9092,192.168.186.18:9092,192.168.186.216:9092 group-id: secKill-group auto-offset-reset: earliest key-deserializer: org.apache.kafka.common.serialization.StringDeserializer value-deserializer: org.apache.kafka.common.serialization.StringDeserializer producer: bootstrap-servers: 192.168.186.77:9092,192.168.186.18:9092,192.168.186.216:9092 key-serializer: org.apache.kafka.common.serialization.StringSerializer value-serializer: org.apache.kafka.common.serialization.StringSerializer
6.6 SpringKafkaApplication.java
package org.example; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class SpringKafkaApplication { public static void main(String[] args) { SpringApplication.run(SpringKafkaApplication.class, args); } }
6.7 Product.java
package org.example.entity; import jakarta.persistence.*; import lombok.Getter; import lombok.Setter; import java.math.BigDecimal; @Getter @Setter @Entity @Table(name = "products") public class Product { @Id @Column(name = "product_id", nullable = false) private Long id; @Column(name = "product_name", nullable = false) private String productName; @Column(name = "price", nullable = false, precision = 10, scale = 2) private BigDecimal price; @Column(name = "stock", nullable = false) private Integer stock; @Lob @Column(name = "description") private String description; @Version private int version; // 乐观锁字段 }
6.8 ProductRepository.java
package org.example.repository; import org.example.entity.Product; import org.springframework.data.jpa.repository.JpaRepository; import org.springframework.stereotype.Repository; @Repository public interface ProductRepository extends JpaRepository<Product,Long> { }
6.9 ProductService.java
package org.example.service; import org.example.entity.Product; import org.example.repository.ProductRepository; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import org.springframework.transaction.annotation.Transactional; @Service public class ProductService { @Autowired private ProductRepository productRepository; @Transactional //检查是否还有库存 public boolean attemptPurchase(Long productId, int quantity) { Product product = productRepository.findById(productId).orElse(null); if (product != null && product.getStock() >= quantity) { product.setStock(product.getStock() - quantity); productRepository.save(product); return true; } return false; } //获取全部产品 public Product getProduct(Long productId) { return productRepository.findById(productId).orElse(null); } }
6.10 KafkaMessageService.java
package org.example.service; import org.example.entity.Product; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.kafka.annotation.KafkaListener; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.stereotype.Service; @Service public class KafkaMessageService { @Autowired private KafkaTemplate<String, String> kafkaTemplate; @Autowired private ProductService productService; // 将秒杀请求发送到 Kafka public Object sendKill(String topic, String productId) { kafkaTemplate.send(topic, productId); Product product = productService.getProduct(Long.valueOf(productId)); return product; } @KafkaListener(topics = "product", groupId = "secKill-group") public void receiveKillRequest(String productId) { boolean success = productService.attemptPurchase(Long.parseLong(productId), 1); if (success) { System.out.println("秒杀成功!剩余库存:"+productService.getProduct(Long.valueOf(productId)).getStock()); } else { System.out.println("秒杀失败!库存不足...") ; } } }
6.11 killController.java
package org.example.controller; import org.example.service.KafkaMessageService; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.*; @RestController @RequestMapping("/kill") public class killController { @Autowired private KafkaMessageService kafkaMessageService; @GetMapping("/{productId}") public ResponseEntity<?> initiateSeckill(@PathVariable String productId) { Object o = kafkaMessageService.sendKill("product", productId); return ResponseEntity.ok().body(o); } }
6.12 项目测试
6.12.1 网页预览
6.12.2 模拟秒杀
6.12.3 秒杀结果
7. 总结
通过命令行实现kafka的快速入门,并实现简单的秒杀案例,仅供学习参考。