Pytorch使用教学1-Tensor的创建

avatar
作者
筋斗云
阅读量:0

在这里插入图片描述

0 导读

在我们不知道什么是深度学习计算框架时,我们可以把PyTorch看做是Python的第三方库,在PyTorch中定义了适用于深度学习的张量Tensor,以及张量的各类计算。就相当于NumPy中定义的Array和对应的科学计算方法,正是这些基本数据类型和对应的方法函数,为我们进一步在PyTorch上进行深度学习建模提供了基本对象和基本工具。

因此,我们需要熟练掌握PyTorch中张量的基本操作方法。torch.Tensor是一种包含单一数据类型元素的多维矩阵。

import torch torch.__version__ # '1.7.0' 

1 张量的创建

张量的最基本创建方法和Numpy中创建Array的格式一致,都是创建函数的格式。

1.1 通过列表创建

t = torch.tensor([1, 2]) print(t) # tensor([1, 2]) 

1.2 通过元组创建

t = torch.tensor((1, 2)) print(t) # tensor([1, 2]) 

1.3 通过Numpy创建

import numpy as np n = np.array([1, 2]) t = torch.tensor(n) print(t) # tensor([1, 2]) 

2 张量的数据类型

Python中,我们可以使用type()方法查看一个变量的数据类型。

2.1 type()

t = torch.tensor([1, 2]) print(type(t)) # <class 'torch.Tensor'> 

Python环境中直接使用type()方法打印变量t的类型torch.Tensor。那么Tensor下有什么类型呢?我们需要使用dtype方法进行查看。

2.2 dtype

t = torch.tensor([1, 2]) print(t.dtype) # torch.int64 

我们可以看到t的大类是Tensor,更具体的说,它是torch.int64类型的变量。

2.3 type()dtype的不同

i = torch.tensor([1, 2]) f = torch.tensor([1.0, 2.0]) print(type(i), i.dtype, sep = ' , ') print(type(f), f.dtype, sep = ' , ') # <class 'torch.Tensor'> , torch.int64 # <class 'torch.Tensor'> , torch.float32 

我们可以看到,type()不能识别出Tensor内部的数据类型,只能识别出变量的基本类型是Tensor,而dtype方法可以识别出变量具体为哪种类型的Tensor

2.4 PyTorchTensor的数据类型

PyTorch中我们常用Tensor的数据类型有整数型、浮点型和布尔型。具体如下:

数据类型dtype
32bit浮点数torch.float32或torch.float
64bit浮点数torch.float64或torch.double
16bit浮点数torch.half
8bit无符号整数torch.unit8
8bit有符号整数torch.int8
16bit有符号整数torch.int16或torch.short
32bit有符号整数torch.int32或torch.int
64bit有符号整数torch.int64
布尔型torch.bool
复数型torch.complex64

此外,我们可以在创建张量时通过dtype参数直接定义它的类型。

t = torch.tensor([1, 2], dtype = torch.float64) print(t.dtype) # torch.float64 

3 张量类型的转化

3.1 张量类型的隐式转化

NumpyArray相同,当张量各元素属于不同类型时,系统会自动进行隐式转化。

t = torch.tensor([1.1, 2]) print(t) # tensor([1.1000, 2.0000]) 
t = torch.tensor([True, 2]) print(t) # tensor([1, 2]) 

3.2 张量类型的转化方法

可以使用.float().int()等方法对张量类型进行转化。

t = torch.tensor([1, 2]) f = t.float() print(f) print(t) # tensor([1., 2.]) # tensor([1, 2]) 

需要注意的是,这里并不会改变原来t的数据类型。

Pytorch张量操作大全:

Pytorch使用教学1-Tensor的创建
Pytorch使用教学2-Tensor的维度
Pytorch使用教学3-特殊张量的创建与类型转化
Pytorch使用教学4-张量的索引
Pytorch使用教学5-视图view与reshape的区别
Pytorch使用教学6-张量的分割与合并
Pytorch使用教学7-张量的广播
Pytorch使用教学8-张量的科学运算
Pytorch使用教学9-张量的线性代数运算
Pytorch使用教学10-张量操作方法大总结

有关Pytorch建模相关的AI干货请扫码关注公众号「AI有温度」阅读获取
在这里插入图片描述

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!