动态规划:13目标和

avatar
作者
猴君
阅读量:0

动态规划:13目标和

在这里插入图片描述
题目:494. 目标和


如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,target是2的话其实就是无解的,所以:

if ((target + sum) % 2 == 1) return 0; // 此时没有方案 

同时如果 target的绝对值已经大于sum,那么也是没有方案的。

if (Math.abs(target) > sum) return 0; // 此时没有方案 

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

五部曲

  1. 确定dp数组含义:填满j(包括j)这么大容积的包,有dp[j]种方法

  2. 确定递归公式:dp[j] += dp[j - nums[i]]

    有哪些来源可以推出dp[j]呢?

    只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

    例如:dp[j],j 为5,

    • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
    • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
    • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
    • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
    • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

    那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

    所以求组合类问题的公式,都是类似这种:

    dp[j] += dp[j - nums[i]] 

    这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  3. dp数组初始化:dp[0] = 1

    从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

    这里有人可能认为从dp数组定义来说 dp[0] 应该是0,也有人认为dp[0]应该是1。

    其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

    如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。(我们注意到一点,之前的题目物品的重量都不会为0,但是本题中是可以为0的,物品重量既然为0了,那么我们容量为0的背包就可以装重量为0的物品,所以特殊)

    所以本题我们应该初始化 dp[0] 为 1。

    可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

    其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

    dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  4. 遍历顺序:先物后包,包要倒序

  5. debug:打印dp数组

总结

本题还是有点难度,大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:

dp[j] += dp[j - nums[i]]; 

后面我们在讲解完全背包的时候,还会用到这个递推公式!

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!