【海贼王的数据航海】时间复杂度 | 空间复杂度

avatar
作者
猴君
阅读量:0

目录

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

2.2 -> 大O的渐进表示法

2.3 -> 常见时间复杂度计算

3 -> 空间复杂度

4 -> 常见复杂度对比


1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

#define _CRT_SECURE_NO_WARNINGS  #include <iostream> using namespace std;  long long fib(int N) { 	if (N < 3) 		return 1;  	return fib(N - 1) + fib(N - 2); }  int main() {  	  	return 0; }

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

#define _CRT_SECURE_NO_WARNINGS  #include <iostream> using namespace std;  // 请计算一下Func1中++count语句总共执行了多少次? void Func1(int N) { 	int count = 0; 	for (int i = 0; i < N; ++i) 		for (int j = 0; j < N; ++j) 			++count;  	for (int k = 0; k < 2 * N; ++k) 		++count;  	int M = 10; 	while (M--) 		++count;  	cout << count << endl; }  int main() {   	return 0; }

Func1执行的基本操作数:

F(N) = N^{2} + 2N + 10

-> N = 10 F(N) = 130 -> N = 100 F(N) = 10210 -> N = 1000 F(N) = 1002010

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

O(N^{2})

-> N = 10 F(N) = 100

-> N = 100 F(N) = 10000 -> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 平均情况:N / 2次找到
  • 最坏情况:N次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

O(N)

2.3 -> 常见时间复杂度计算

实例1:

// 计算Func2的时间复杂度? void Func2(int N) { 	int count = 0; 	for (int k = 0; k < 2 * N; ++k) 		++count;  	int M = 10; 	while (M--) 		++count;  	cout << count << endl; }

实例2:

// 计算Func3的时间复杂度? void Func3(int N, int M) { 	int count = 0; 	for (int k = 0; k < M; ++k) 		++count;  	for (int k = 0; k < N; ++k) 		++count;  	cout << count << endl; }

实例3:

// 计算Func4的时间复杂度? void Func4(int N) { 	int count = 0; 	for (int k = 0; k < 100; ++k) 		++count;  	cout << count << endl; }

实例4:

// 计算strchr的时间复杂度? const char* strchr(const char* str, int character);

实例5:

// 计算BubbleSort的时间复杂度? void BubbleSort(int* a, int n) { 	assert(a); 	for (size_t end = n; end > 0; --end) 	{ 		int exchange = 0; 		for (size_t i = 1; i < end; ++i) 		{ 			if (a[i - 1] > a[i]) 			{ 				Swap(&a[i - 1], &a[i]); 				exchange = 1; 			} 		} 		if (exchange == 0) 			break; 	} }

实例6:

// 计算BinarySearch的时间复杂度? int BinarySearch(int* a, int n, int x) { 	assert(a); 	int begin = 0; 	int end = n - 1;  	// [begin, end]:begin和end是左闭右闭区间,因此有=号 	while (begin <= end) 	{ 		int mid = begin + ((end - begin) >> 1); 		if (a[mid] < x) 			begin = mid + 1; 		else if (a[mid] > x) 			end = mid - 1; 		else 			return mid; 	}  	return -1; }

实例7:

// 计算阶乘递归Fac的时间复杂度? long long Fac(size_t N) { 	if (0 == N) 		return 1;  	return Fac(N - 1) * N; }

实例8:

// 计算斐波那契递归fib的时间复杂度? long long fib(size_t N) { 	if (N < 3) 		return 1;  	return fib(N - 1) + fib(N - 2); }

答案及分析:

1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N) 2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M) 3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1) 4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N) 5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2) 6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。 8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

3 -> 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少byte的空间,因为意义不大,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本与时间复杂度类似,也是使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显式申请的额外空间来确定。

实例1:

// 计算BubbleSort的空间复杂度? void BubbleSort(int* a, int n) { 	assert(a); 	for (size_t end = n; end > 0; --end) 	{ 		int exchange = 0; 		for (size_t i = 1; i < end; ++i) 		{ 			if (a[i - 1] > a[i]) 			{ 				Swap(&a[i - 1], &a[i]); 				exchange = 1; 			} 		}  		if (exchange == 0) 			break; 	} }

实例2:

// 计算fib的空间复杂度? // 返回斐波那契数列的前n项 long long* fib(size_t n) { 	if (n == 0) 		return NULL;  	long long* arr = (long long*)malloc((n + 1) * sizeof(long long)); 	arr[0] = 0; 	arr[1] = 1; 	for (int i = 2; i <= n; ++i) 		arr[i] = arr[i - 1] + arr[i - 2];  	return arr; }

实例3:

// 计算阶乘递归Fac的空间复杂度? long long Fac(size_t N) { 	if (N == 0) 		return 1;  	return Fac(N - 1) * N; }

答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1) 2. 实例2动态开辟了N个空间,空间复杂度为 O(N) 3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4 -> 常见复杂度对比

一般算法的常见复杂度:

5201314O(1)常数阶
3n + 4O(n)线性阶
3n ^ 2 + 4n + 5O(n ^ 2)平方阶
3log(2)n + 4O(logn)对数阶
2n + 3nlog(2)n + 4O(nlogn)nlogn阶
n ^ 3 + n ^ 2 + 3n + 4O(n ^ 3)立方阶
2 ^ nO(2 ^ n)指数阶


感谢大佬们支持!!!

互三啦!!!

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!