Spark实时(三):Structured Streaming入门案例

avatar
作者
猴君
阅读量:0

文章目录

Structured Streaming入门案例

一、Scala代码如下

二、Java 代码如下

三、以上代码注意点如下


Structured Streaming入门案例

我们使用Structured Streaming来监控socket数据统计WordCount。这里我们使用Spark版本为3.4.3版本,首先在Maven pom文件中导入以下依赖:

 <!-- 配置以下可以解决 在jdk1.8环境下打包时报错 “-source 1.5 中不支持 lambda 表达式” -->   <properties>     <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>     <maven.compiler.source>1.8</maven.compiler.source>     <maven.compiler.target>1.8</maven.compiler.target>     <spark.version>3.4.3</spark.version>   </properties>    <dependencies>     <!-- Spark-core -->     <dependency>       <groupId>org.apache.spark</groupId>       <artifactId>spark-core_2.12</artifactId>       <version>${spark.version}</version>     </dependency>     <!-- SparkSQL -->     <dependency>       <groupId>org.apache.spark</groupId>       <artifactId>spark-sql_2.12</artifactId>       <version>${spark.version}</version>     </dependency>     <!-- SparkSQL  ON  Hive-->     <dependency>       <groupId>org.apache.spark</groupId>       <artifactId>spark-hive_2.12</artifactId>       <version>${spark.version}</version>     </dependency>     <!--mysql依赖的jar包-->     <dependency>       <groupId>mysql</groupId>       <artifactId>mysql-connector-java</artifactId>       <version>5.1.47</version>     </dependency>     <!--SparkStreaming-->     <dependency>       <groupId>org.apache.spark</groupId>       <artifactId>spark-streaming_2.12</artifactId>       <version>${spark.version}</version>     </dependency>      <!-- Kafka 0.10+ Source For Structured Streaming-->     <dependency>       <groupId>org.apache.spark</groupId>       <artifactId>spark-sql-kafka-0-10_2.12</artifactId>       <version>${spark.version}</version>     </dependency>      <!-- 向kafka 生产数据需要包 -->     <dependency>       <groupId>org.apache.kafka</groupId>       <artifactId>kafka-clients</artifactId>       <version>2.8.0</version>     </dependency>      <!-- Scala 包-->     <dependency>       <groupId>org.scala-lang</groupId>       <artifactId>scala-library</artifactId>       <version>2.12.15</version>     </dependency>     <dependency>       <groupId>org.scala-lang</groupId>       <artifactId>scala-compiler</artifactId>       <version>2.12.15</version>     </dependency>     <dependency>       <groupId>org.scala-lang</groupId>       <artifactId>scala-reflect</artifactId>       <version>2.12.15</version>     </dependency>     <dependency>       <groupId>log4j</groupId>       <artifactId>log4j</artifactId>       <version>1.2.12</version>     </dependency>     <dependency>       <groupId>com.google.collections</groupId>       <artifactId>google-collections</artifactId>       <version>1.0</version>     </dependency>    </dependencies>

一、Scala代码如下

package com.lanson.structuredStreaming  /**  *  Structured Streaming 实时读取Socket数据  */  import org.apache.spark.sql.streaming.StreamingQuery import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}  /**  * Structured Streaming 读取Socket数据  */ object SSReadSocketData {   def main(args: Array[String]): Unit = {      //1.创建SparkSession对象     val spark: SparkSession = SparkSession.builder()       .master("local")       .appName("StructuredSocketWordCount")       //默认200个并行度,由于源头数据量少,可以设置少一些并行度       .config("spark.sql.shuffle.partitions",1)       .getOrCreate()      import spark.implicits._      spark.sparkContext.setLogLevel("Error")      //2.读取Socket中的每行数据,生成DataFrame默认列名为"value"     val lines: DataFrame = spark.readStream       .format("socket")       .option("host", "node3")       .option("port", 9999)       .load()      //3.将每行数据切分成单词,首先通过as[String]转换成Dataset操作     val words: Dataset[String] = lines.as[String].flatMap(line=>{line.split(" ")})      //4.按照单词分组,统计个数,自动多一个列count     val wordCounts: DataFrame = words.groupBy("value").count()      //5.启动流并向控制台打印结果     val query: StreamingQuery = wordCounts.writeStream       //更新模式设置为complete       .outputMode("complete")       .format("console")       .start()     query.awaitTermination()    }  } 

 

二、Java 代码如下

package com.lanson.structuredStreaming;  import java.util.Arrays; import java.util.Iterator; import java.util.concurrent.TimeoutException; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.streaming.StreamingQuery; import org.apache.spark.sql.streaming.StreamingQueryException;  public class SSReadSocketData01 {      public static void main(String[] args) throws StreamingQueryException, TimeoutException {         SparkSession spark = SparkSession.builder().master("local")             .appName("SSReadSocketData01")             .config("spark.sql.shuffle.partitions", 1)             .getOrCreate();                  spark.sparkContext().setLogLevel("Error");          Dataset<Row> lines = spark.readStream().format("socket")             .option("host", "node3")             .option("port", 9999)             .load();          Dataset<String> words = lines.as(Encoders.STRING())             .flatMap(new FlatMapFunction<String, String>() {                 @Override                 public Iterator<String> call(String line) throws Exception {                     return Arrays.asList(line.split(" ")).iterator();                 }             }, Encoders.STRING());          Dataset<Row> wordCounts = words.groupBy("value").count();          StreamingQuery query = wordCounts.writeStream()             .outputMode("complete")             .format("console")             .start();                  query.awaitTermination();     } } 

 

以上代码编写完成之后,在node3节点执行“nc -lk 9999”启动socket服务器,然后启动代码,向socket中输入以下数据:

第一次输入:a b c 第二次输入:d a c 第三次输入:a b c

可以看到控制台打印如下结果:

------------------------------------------- Batch: 1 ------------------------------------------- +-----+-----+ |value|count| +-----+-----+ |    c|    1| |    b|    1| |    a|    1| +-----+-----+  ------------------------------------------- Batch: 2 ------------------------------------------- +-----+-----+ |value|count| +-----+-----+ |    d|    1| |    c|    2| |    b|    1| |    a|    2| +-----+-----+  ------------------------------------------- Batch: 3 ------------------------------------------- +-----+-----+ |value|count| +-----+-----+ |    d|    1| |    c|    3| |    b|    2| |    a|    3| +-----+-----+  

三、以上代码注意点如下

  • SparkSQL 默认并行度为200,这里由于数据量少,可以将并行度通过参数“spark.sql.shuffle.partitions”设置少一些。
  • StructuredStreaming读取过来数据默认是DataFrame,默认有“value”名称的列
  • 对获取的DataFrame需要通过as[String]转换成Dataset进行操作
  • 结果输出时的OutputMode有三种输出模式:Complete Mode、Append Mode、Update Mode。

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!