轻量化YOLOv7系列:结合G-GhostNet | 适配GPU,华为诺亚提出G-Ghost方案升级GhostNet

avatar
作者
筋斗云
阅读量:0

在这里插入图片描述

轻量化YOLOv7系列:结合G-GhostNet | 适配GPU,华为诺亚提出G-Ghost方案升级GhostNet


  本文提供了改进 YOLOv7注意力系列包含不同的注意力机制以及多种加入方式,在本文中具有完整的代码和包含多种更有效加入YOLOv8中的yaml结构,读者可以获取到注意力加入的代码和使用经验,总有一种适合你和你的数据集。

🗝️YOLOv7实战宝典--星级指南:从入门到精通,您不可错过的技巧

  -- 聚焦于YOLO的 最新版本对颈部网络改进、添加局部注意力、增加检测头部,实测涨点

💡 深入浅出YOLOv7:我的专业笔记与技术总结

  -- YOLOv7轻松上手, 适用技术小白,文章代码齐全,仅需 一键train,解决 YOLOv7的技术突破和创新潜能

❤️ YOLOv8创新攻略:突破技术瓶颈,激发AI新潜能"

   -- 指导独特且专业的分析, 也支持对YOLOv3、YOLOv4、YOLOv5、YOLOv6等网络的修改

🎈 改进YOLOv7专栏内容《YOLOv7实战宝典》📖 ,改进点包括:    替换多种骨干网络/轻量化网络,添加40多种注意力包含自注意力/上下文注意力/自顶向下注意力机制/空间通道注意力/,设计不同的网络结构,助力涨点!!!

在这里插入图片描述

  YOLOv7注意力系列包含不同的注意力机制

需要修改的代码

models/GGhostRegNet.py代码

  1. 新建这个文件,放入网络代码
import torch import torch.nn as nn import torch.nn.functional as F def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):     """3x3 convolution with padding"""     return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,                      padding=dilation, groups=groups, bias=False, dilation=dilation)   def conv1x1(in_planes, out_planes, stride=1):     """1x1 convolution"""     return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)   class GHOSTBottleneck(nn.Module):     expansion = 1     __constants__ = ['downsample']      def __init__(self, inplanes, planes, stride=1, downsample=None, group_width=1,                  dilation=1, norm_layer=None):         super(GHOSTBottleneck, self).__init__()         if norm_layer is None:             norm_layer = nn.BatchNorm2d         width = planes * self.expansion         # Both self.conv2 and self.downsample layers downsample the input when stride != 1         self.conv1 = conv1x1(inplanes, width)         self.bn1 = norm_layer(width)         self.conv2 = conv3x3(width, width, stride, width // min(width, group_width), dilation)         self.bn2 = norm_layer(width)         self.conv3 = conv1x1(width, planes)         self.bn3 = norm_layer(planes)         self.relu = nn.SiLU(inplace=True)          self.downsample = downsample         self.stride = stride       def forward(self, x):         identity = x          out = self.conv1(x)         out = self.bn1(out)         out = self.relu(out)          out = self.conv2(out)         out = self.bn2(out)         out = self.relu(out)            out = self.conv3(out)         out = self.bn3(out)          if self.downsample is not None:             identity = self.downsample(x)          out += identity         out = self.relu(out)          return out   # class LambdaLayer(nn.Module): #     def __init__(self, lambd): #         super(LambdaLayer, self).__init__() #         self.lambd = lambd # #     def forward(self, x): #         return self.lambd(x)   class Stage(nn.Module):      def __init__(self, block, inplanes, planes, group_width, blocks, stride=1, dilate=False, cheap_ratio=0.5):         super(Stage, self).__init__()         norm_layer = nn.BatchNorm2d         downsample = None         self.dilation = 1         previous_dilation = self.dilation         self.inplanes = inplanes         if dilate:             self.dilation *= stride             stride = 1         if stride != 1 or self.inplanes != planes:             downsample = nn.Sequential(                 conv1x1(inplanes, planes, stride),                 norm_layer(planes),             )          self.base = block(inplanes, planes, stride, downsample, group_width,                           previous_dilation, norm_layer)         self.end = block(planes, planes, group_width=group_width,                          dilation=self.dilation,                          norm_layer=norm_layer)          group_width = int(group_width * 0.75)         raw_planes = int(planes * (1 - cheap_ratio) / group_width) * group_width         cheap_planes = planes - raw_planes         self.cheap_planes = cheap_planes         self.raw_planes = raw_planes          self.merge = nn.Sequential(             nn.AdaptiveAvgPool2d(1),             nn.Conv2d(planes + raw_planes * (blocks - 2), cheap_planes,                       kernel_size=1, stride=1, bias=False),             nn.BatchNorm2d(cheap_planes),             nn.SiLU(inplace=True),             nn.Conv2d(cheap_planes, cheap_planes, kernel_size=1, bias=False),             nn.BatchNorm2d(cheap_planes),         )         self.cheap = nn.Sequential(             nn.Conv2d(cheap_planes, cheap_planes,                       kernel_size=1, stride=1, bias=False),             nn.BatchNorm2d(cheap_planes),         )         self.cheap_relu = nn.SiLU(inplace=True)          layers = []         # downsample = nn.Sequential(         #     LambdaLayer(lambda x: x[:, :raw_planes])         # )          layers = []         layers.append(block(raw_planes, raw_planes, 1, downsample, group_width,                             self.dilation, norm_layer))         inplanes = raw_planes         for _ in range(2, blocks - 1):             layers.append(block(inplanes, raw_planes, group_width=group_width,                                 dilation=self.dilation,                                 norm_layer=norm_layer))          self.layers = nn.Sequential(*layers)      def forward(self, input):         x0 = self.base(input)          m_list = [x0]         e = x0[:, :self.raw_planes]         for l in self.layers:             e = l(e)             m_list.append(e)         m = torch.cat(m_list, 1)         m = self.merge(m)          c = x0[:, self.raw_planes:]         c = self.cheap_relu(self.cheap(c) + m)          x = torch.cat((e, c), 1)         x = self.end(x)         return x   class GGhostRegNet(nn.Module):      def __init__(self, block, layers, widths, layer_number, num_classes=1000, zero_init_residual=True,                  group_width=8, replace_stride_with_dilation=None,                  norm_layer=None):         super(GGhostRegNet, self).__init__()         # ---------------------------------         self.layer_number = layer_number         # --------------------------------------         if norm_layer is None:             norm_layer = nn.BatchNorm2d         self._norm_layer = norm_layer          self.inplanes = widths[0]         self.dilation = 1         if replace_stride_with_dilation is None:             # each element in the tuple indicates if we should replace             # the 2x2 stride with a dilated convolution instead             replace_stride_with_dilation = [False, False, False, False]         if len(replace_stride_with_dilation) != 4:             raise ValueError("replace_stride_with_dilation should be None "                              "or a 4-element tuple, got {}".format(replace_stride_with_dilation))         self.group_width = group_width         # self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1,         #                        bias=False)         # self.bn1 = norm_layer(self.inplanes)         # self.relu = nn.ReLU(inplace=True)         if self.layer_number in [0]:             self.layer1 = self._make_layer(block, widths[0], layers[0], stride=1,                                            dilate=replace_stride_with_dilation[0])           if self.layer_number in [1]:             self.inplanes = widths[0]             if layers[1] > 2:                 self.layer2 = Stage(block, self.inplanes, widths[1], group_width, layers[1], stride=1,                                     dilate=replace_stride_with_dilation[1], cheap_ratio=0.5)             else:                 self.layer2 = self._make_layer(block, widths[1], layers[1], stride=1,                                                dilate=replace_stride_with_dilation[1])         if self.layer_number in [2]:             self.inplanes = widths[1]             self.layer3 = Stage(block, self.inplanes, widths[2], group_width, layers[2], stride=1,                                 dilate=replace_stride_with_dilation[2], cheap_ratio=0.5)          if self.layer_number in [3]:             self.inplanes = widths[2]             if layers[3] > 2:                 self.layer4 = Stage(block, self.inplanes, widths[3], group_width, layers[3], stride=1,                                     dilate=replace_stride_with_dilation[3], cheap_ratio=0.5)             else:                 self.layer4 = self._make_layer(block, widths[3], layers[3], stride=1,                                                dilate=replace_stride_with_dilation[3])         # self.avgpool = nn.AdaptiveAvgPool2d((1, 1))         # self.dropout = nn.Dropout(0.2)         # self.fc = nn.Linear(widths[-1] * block.expansion, num_classes)          for m in self.modules():             if isinstance(m, nn.Conv2d):                 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')             elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):                 nn.init.constant_(m.weight, 1)                 nn.init.constant_(m.bias, 0)      def _make_layer(self, block, planes, blocks, stride=1, dilate=False):         norm_layer = self._norm_layer         downsample = None         previous_dilation = self.dilation         if dilate:             self.dilation *= stride             stride = 1         if stride != 1 or self.inplanes != planes:             downsample = nn.Sequential(                 conv1x1(self.inplanes, planes, stride),                 norm_layer(planes),             )          layers = []         layers.append(block(self.inplanes, planes, stride, downsample, self.group_width,                             previous_dilation, norm_layer))         self.inplanes = planes         for _ in range(1, blocks):             layers.append(block(self.inplanes, planes, group_width=self.group_width,                                 dilation=self.dilation,                                 norm_layer=norm_layer))          return nn.Sequential(*layers)      def _forward_impl(self, x):          if self.layer_number in [0]:             x = self.layer1(x)         if self.layer_number in [1]:             x = self.layer2(x)         if self.layer_number in [2]:             x = self.layer3(x)         if self.layer_number in [3]:             x = self.layer4(x)          return x      def forward(self, x):         return self._forward_impl(x) 

在这里插入图片描述

  1. yolo里引用
    在这里插入图片描述

在这里插入图片描述

创建yaml文件

# parameters nc: 80  # number of classes depth_multiple: 1.0  # model depth multiple width_multiple: 1.0  # layer channel multiple  # anchors anchors:   - [12,16, 19,36, 40,28]  # P3/8   - [36,75, 76,55, 72,146]  # P4/16   - [142,110, 192,243, 459,401]  # P5/32  # yolov7_MY backbone backbone:   # [from, number, module, args]   [[-1, 1, Conv, [32, 3, 1]],  # 0       [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2          [-1, 1, Conv, [64, 3, 1]],        [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4      [-1, 1, Conv, [48, 1, 1]], #   [-2, 1, Conv, [64, 1, 1]], #   [-1, 1, Conv, [64, 3, 1]], #   [-1, 1, Conv, [64, 3, 1]], #   [-1, 1, Conv, [64, 3, 1]], #   [-1, 1, Conv, [64, 3, 1]], #   [[-1, -3, -5, -6], 1, Concat, [1]], #   [-1, 1, Conv, [256, 1, 1]],  # 11    [-1, 1, GGhostRegNet, [48, 0]], # 5     [-1, 1, MP, []],    [-1, 1, Conv, [48, 1, 1]],    [-3, 1, Conv, [48, 1, 1]],    [-1, 1, Conv, [48, 3, 2]],    [[-1, -3], 1, Concat, [1]],  # 16-P3/8      [-1, 1, Conv, [96, 1, 1]], #   [-2, 1, Conv, [128, 1, 1]], #   [-1, 1, Conv, [128, 3, 1]], #   [-1, 1, Conv, [128, 3, 1]], #   [-1, 1, Conv, [128, 3, 1]], #   [-1, 1, Conv, [128, 3, 1]], #   [[-1, -3, -5, -6], 1, Concat, [1]], #   [-1, 1, Conv, [512, 1, 1]],  # 24    [-1, 3, GGhostRegNet, [96, 1]], # 12     [-1, 1, MP, []],    [-1, 1, Conv, [96, 1, 1]],    [-3, 1, Conv, [96, 1, 1]],    [-1, 1, Conv, [96, 3, 2]],    [[-1, -3], 1, Concat, [1]],  # 29-P4/16      [-1, 1, Conv, [240, 1, 1]], #   [-2, 1, Conv, [256, 1, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [[-1, -3, -5, -6], 1, Concat, [1]], #   [-1, 1, Conv, [1024, 1, 1]],  # 37    [-1, 5, GGhostRegNet, [240, 2]], # 19     [-1, 1, MP, []],    [-1, 1, Conv, [240, 1, 1]],    [-3, 1, Conv, [240, 1, 1]],    [-1, 1, Conv, [240, 3, 2]],    [[-1, -3], 1, Concat, [1]],  # 42-P5/32      [-1, 1, Conv, [528, 1, 1]], #   [-2, 1, Conv, [256, 1, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [-1, 1, Conv, [256, 3, 1]], #   [[-1, -3, -5, -6], 1, Concat, [1]], #   [-1, 1, Conv, [1024, 1, 1]],  # 50    [-1, 7, GGhostRegNet, [528, 3]], # 26   ]  # yolov7_MY head head:   [[-1, 1, SPPCSPC, [512]], # 27       [-1, 1, Conv, [256, 1, 1]],    [-1, 1, nn.Upsample, [None, 2, 'nearest']],    [19, 1, Conv, [256, 1, 1]], # route backbone P4    [[-1, -2], 1, Concat, [1]],        [-1, 1, Conv, [256, 1, 1]],    [-2, 1, Conv, [256, 1, 1]],    [-1, 1, Conv, [128, 3, 1]],    [-1, 1, Conv, [128, 3, 1]],    [-1, 1, Conv, [128, 3, 1]],    [-1, 1, Conv, [128, 3, 1]],    [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],    [-1, 1, Conv, [256, 1, 1]], # 39        [-1, 1, Conv, [128, 1, 1]],    [-1, 1, nn.Upsample, [None, 2, 'nearest']],    [12, 1, Conv, [128, 1, 1]], # route backbone P3    [[-1, -2], 1, Concat, [1]],        [-1, 1, Conv, [128, 1, 1]],    [-2, 1, Conv, [128, 1, 1]],    [-1, 1, Conv, [64, 3, 1]],    [-1, 1, Conv, [64, 3, 1]],    [-1, 1, Conv, [64, 3, 1]],    [-1, 1, Conv, [64, 3, 1]],    [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],    [-1, 1, Conv, [128, 1, 1]], # 51           [-1, 1, MP, []],    [-1, 1, Conv, [128, 1, 1]],    [-3, 1, Conv, [128, 1, 1]],    [-1, 1, Conv, [128, 3, 2]],    [[-1, -3, 39], 1, Concat, [1]],        [-1, 1, Conv, [256, 1, 1]],    [-2, 1, Conv, [256, 1, 1]],    [-1, 1, Conv, [128, 3, 1]],    [-1, 1, Conv, [128, 3, 1]],    [-1, 1, Conv, [128, 3, 1]],    [-1, 1, Conv, [128, 3, 1]],    [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],    [-1, 1, Conv, [256, 1, 1]], # 64           [-1, 1, MP, []],    [-1, 1, Conv, [256, 1, 1]],    [-3, 1, Conv, [256, 1, 1]],    [-1, 1, Conv, [256, 3, 2]],    [[-1, -3, 27], 1, Concat, [1]],        [-1, 1, Conv, [512, 1, 1]],    [-2, 1, Conv, [512, 1, 1]],    [-1, 1, Conv, [256, 3, 1]],    [-1, 1, Conv, [256, 3, 1]],    [-1, 1, Conv, [256, 3, 1]],    [-1, 1, Conv, [256, 3, 1]],    [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],    [-1, 1, Conv, [512, 1, 1]], # 77        [51, 1, RepConv, [256, 3, 1]],    [64, 1, RepConv, [512, 3, 1]],    [77, 1, RepConv, [1024, 3, 1]],     [[78,79,80], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)   ]   

测试是否创建成功

在这里插入图片描述

在这里插入图片描述

这里是引用

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!