自定义时长裁切视频

avatar
作者
筋斗云
阅读量:0
  1. 人脸检测与定位:

find_host_face_location:在视频的前几秒内快速检测并定位主持人的人脸,缩小帧尺寸以提高处理速度。

  1. 裁剪框计算:

calculate_cropping_box:基于检测到的人脸位置,计算一个适合的裁剪框,确保主持人的人脸处于视频画面的中心位置。

  1. 动态帧率采样与首次人脸检测时间:

find_first_face_time:动态调整帧率采样(sample_rate),优化处理速度,找到视频中首次出现人脸的确切时间。

  1. 视频裁剪与帧率调整:

process_video:综合以上功能,裁剪视频以保留从首次出现人脸开始的10秒片段,调整视频尺寸和帧率为标准格式,输出处理后的视频。

#  python data_utils/video/cut_crop_fps_1.1.py  import os import cv2 import math import numpy as np import face_recognition from moviepy.editor import VideoFileClip, concatenate_videoclips from tqdm import tqdm  def find_host_face_location(video_path):     """ 在视频的前几秒内检测并返回主持人面部的大致位置 """     cap = cv2.VideoCapture(video_path)     found_face = False     host_face_location = None          while cap.isOpened():         ret, frame = cap.read()         if not ret:             break                  # 缩小帧尺寸以加快处理速度         small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)         rgb_small_frame = small_frame[:, :, ::-1]                  # 检测人脸         face_locations = face_recognition.face_locations(rgb_small_frame)                  if face_locations:             # 取第一张脸的位置,假设主持人位于视频画面的中心位置附近             host_face_location = face_locations[0]             # 将位置放大回原始大小             host_face_location = (host_face_location[0]*4, host_face_location[1]*4, host_face_location[2]*4, host_face_location[3]*4)             found_face = True             break          cap.release()     return host_face_location if found_face else None  def calculate_cropping_box(face_location, frame_shape):     """ 根据主持人面部位置计算裁剪框 """     top, right, bottom, left = face_location     center_x, center_y = (left + right) // 2, (top + bottom) // 2     half_width, half_height = 256, 256          left_cropped = max(center_x - half_width, 0)     top_cropped = max(center_y - half_height, 0)     right_cropped = min(center_x + half_width, frame_shape[1])     bottom_cropped = min(center_y + half_height, frame_shape[0])          return (top_cropped, right_cropped, bottom_cropped, left_cropped)  def find_first_face_time(video_path, sample_rate, min_confidence=0.5):      """ 找到视频中第一次出现人脸的时间戳,优化处理速度 """     cap = cv2.VideoCapture(video_path)     fps = cap.get(cv2.CAP_PROP_FPS)     first_face_time = None      while cap.isOpened():         ret, frame = cap.read()         if not ret:             break          # 按照sample_rate进行帧率采样         if cap.get(cv2.CAP_PROP_POS_FRAMES) % sample_rate != 0:             continue          timestamp = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000  # Convert to seconds          # 缩小帧尺寸以加快处理速度         small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)         rgb_small_frame = small_frame[:, :, ::-1]          # 检测人脸         face_locations = face_recognition.face_locations(rgb_small_frame, model='hog')  # 可以选择 'cnn' 或 'hog'          if face_locations:             if not first_face_time:                 first_face_time = timestamp                 break      cap.release()     return first_face_time  def process_video(input_path, output_path):     """ 处理视频,裁剪并调整帧率 """     # 检测主持人面部位置     host_face_location = find_host_face_location(input_path)     if host_face_location is None:         print(f"No face detected in video {input_path}")         return          # 读取视频,获取视频的宽度、高度和帧率     clip = VideoFileClip(input_path)     frame_shape = clip.size[::-1]  # 电影剪辑的尺寸是(width, height),我们需要(height, width)     fps = clip.fps      # 动态设置sample_rate,例如,我们希望每秒检测10次     desired_detection_frequency = 10  # 每秒检测次数     sample_rate = int(fps / desired_detection_frequency)      # 确保sample_rate至少为1,避免除以0的情况     sample_rate = max(sample_rate, 1)      # 计算裁剪框     cropping_box = calculate_cropping_box(host_face_location, frame_shape)          # 找到第一次出现人脸的时间     # 使用动态设置的sample_rate调用find_first_face_time     first_face_time = find_first_face_time(input_path, sample_rate=sample_rate)          print(f"First face time: {first_face_time}")      # 裁剪视频以保留从第一次出现人脸开始的10秒     start_trim = math.ceil(first_face_time)  # 向上取整     end_trim = min(start_trim + 10, clip.duration)  # 确保不超过视频总时长     print(f"Start trim: {start_trim}, End trim: {end_trim}")     trimmed_clip = clip.subclip(start_trim, end_trim)      # 裁剪视频     cropped_clip = trimmed_clip.crop(x1=cropping_box[3], y1=cropping_box[0], x2=cropping_box[1], y2=cropping_box[2])     cropped_clip = cropped_clip.resize((512, 512))          # 调整帧率     cropped_clip = cropped_clip.set_fps(25)          # 保存最终视频     cropped_clip.write_videofile(output_path, codec='libx264', audio_codec='aac')          # 清理资源     cropped_clip.close()  if __name__ == "__main__":     # 遍历指定文件夹中的所有视频文件     input_folder = 'video/HDTF'     video_files = [f for f in os.listdir(input_folder) if f.endswith(('.mp4', '.avi', '.mkv'))]      # 创建一个进度条     with tqdm(total=len(video_files), desc="Processing Videos") as pbar:         for filename in video_files:             input_path = os.path.join(input_folder, filename)             print("input_path:", input_path)             # 动态生成输出文件名             output_filename = f"{os.path.splitext(filename)[0]}_p{os.path.splitext(filename)[1]}"             output_path = os.path.join(input_folder, output_filename)                          # 处理视频             process_video(input_path, output_path)                          # 更新进度条             pbar.update(1) 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!