Hive理论讲解

avatar
作者
猴君
阅读量:0

Hive介绍

1、Hive本质

Hive本质是【数仓设计方案】,hive本身并不存储数据【数据包含:元数据 + (表)数据】。

2、hql和sql对比

  1. sql = 结构化查询语言【structured query language】
  2. hql = hive/hadoop类sql查询语言【hive/hadoop query language like sql】
    说明:对于hql而言,表面是sql。实际上,数据存储HDFS执行引擎Spark,MapReduce,Pig,Tez等

3、数据存储

  • 元数据存储于RDB[关系型数据库]中。其默认存储于DERBY中,但一般在生产环境下存储于mysql中。
  • (表)数据存储于HDFS中。

补充:元数据的讲解

元数据(Metadata)是指描述数据的数据,它提供关于数据集、资源、文件、系统或者业务流程的额外信息,其中就包含库名,表名,字段,数据类型等。
在Hive中,元数据则是由HiveMetaStore统一管理,进行存储、管理、保护和查询等操作。

4、计算引擎

MapReduce

  • Map:清洗,列变形,列裁剪
  • Map+Reduce:聚合

Spark

  • 1、Job中间输出结果可以保存在内存,不再需要读写HDFS
  • 2、速度快,比MapReduce平均快10倍以上

5、Hive层次结构【元数据映射】

逻辑结构物理结构
文件夹(与库同名.db)
文件夹(与表同名)
分区文件夹 (格式:分区字段名=分区字段值)
数据文件
分桶小文件(目的:抽样和数据修改)

6、Hive执行过程

1.UI客户端发出请求 executeQuery[执行查询语句] 2.Driver[驱动] 通过 Compiler 进行编译 3.Compiler 需要向 MetaStore 请求元数据。 编译过程: 	Compiler[驱动] 得到 元数据 后 	先 生成 逻辑执行计划  	再 通过优化形成 物理执行计划 4.将 物理执行计划 通过 Driver[驱动] 交给 ExecutionEngine[执行引擎] 5.ExecutionEngine[执行引擎] 将 物理执行计划 交给 hadoop的MapReduce进行job任务。 6.最终结果落盘到datanode上。 7.UI客户端 向 Driver[驱动] 发起请求 fetchResults 8.Driver 通过 ExecutionEngine[执行引擎] 从 datanode 上将数据拉过来,交给 UI客户端。 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!