深度学习Day-25:Inception-V1算法实战与解析

avatar
作者
筋斗云
阅读量:0

  🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客
 🍖 原作者:[K同学啊 | 接辅导、项目定制]

要求:

  1. 了解并学习图2中的卷积层运算量的计算过程(🏐储备知识->卷积层运算量的计算,有我的推导过程,建议先自己手动推导,然后再看)
  2. 了解并学习卷积层的并行结构与1x1卷积核部分内容(重点
  3. 尝试根据模型框架图写入相应的pytorch代码,并使用Inception v1完成猴痘病识别

一、 基础配置

  • 语言环境:Python3.8
  • 编译器选择:Pycharm
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

二、 前期准备 

1.设置GPU

import pathlib import torch import torch.nn as nn import torch.nn.functional as F from torchvision import transforms, datasets  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  print(device)

2. 导入数据

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。

运行下述代码:

data_dir = './data/' data_dir = pathlib.Path(data_dir)  data_paths = list(data_dir.glob('*')) classeNames = [str(path).split("\\")[1] for path in data_paths] print(classeNames)  image_count = len(list(data_dir.glob('*/*'))) print("图片总数为:", image_count)

得到如下输出:

['Monkeypox', 'Others'] 图片总数为: 2142

接下来,我们通过transforms.Compose对整个数据集进行预处理:

train_transforms = transforms.Compose([     transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸     # transforms.RandomHorizontalFlip(), # 随机水平翻转     transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间     transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛         mean=[0.485, 0.456, 0.406],         std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。 ])  test_transform = transforms.Compose([     transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸     transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间     transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛         mean=[0.485, 0.456, 0.406],         std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。 ])  total_data = datasets.ImageFolder("./data/", transform=train_transforms) print(total_data.class_to_idx)

得到如下输出:

{'Monkeypox': 0, 'Others': 1}

3. 划分数据集

 此处数据集需要做按比例划分的操作:

train_size = int(0.8 * len(total_data)) test_size = len(total_data) - train_size train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) 

接下来,根据划分得到的训练集和验证集对数据集进行包装:

batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset,                                        batch_size=batch_size,                                        shuffle=True,                                        num_workers=0) test_dl = torch.utils.data.DataLoader(test_dataset,                                       batch_size=batch_size,                                       shuffle=True,                                       num_workers=0)

并通过:

for X, y in test_dl:     print("Shape of X [N, C, H, W]: ", X.shape)     print("Shape of y: ", y.shape, y.dtype)     break 

输出测试数据集的数据分布情况:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224]) Shape of y:  torch.Size([32]) torch.int64

4.搭建模型

1.模型搭建

class inception_block(nn.Module):     def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):         super().__init__()         # 1x1 conv branch         self.branch1 = nn.Sequential(             nn.Conv2d(in_channels, ch1x1, kernel_size=1),             nn.BatchNorm2d(ch1x1),             nn.ReLU(inplace=True)         )         # 1x1 conv -> 3x3 conv branch         self.branch2 = nn.Sequential(             nn.Conv2d(in_channels, ch3x3red, kernel_size=1),             nn.BatchNorm2d(ch3x3red),             nn.ReLU(inplace=True),             nn.Conv2d(ch3x3red, ch3x3, kernel_size=3, padding=1),             nn.BatchNorm2d(ch3x3),             nn.ReLU(inplace=True)         )         # 1x1 conv -> 5x5 conv branch         self.branch3 = nn.Sequential(             nn.Conv2d(in_channels, ch5x5red, kernel_size=1),             nn.BatchNorm2d(ch5x5red),             nn.ReLU(inplace=True),             nn.Conv2d(ch5x5red, ch5x5, kernel_size=3, padding=1),             nn.BatchNorm2d(ch5x5),             nn.ReLU(inplace=True)         )         self.branch4 = nn.Sequential(             nn.MaxPool2d(kernel_size=3, stride=1, padding=1),             nn.Conv2d(in_channels, pool_proj, kernel_size=1),             nn.BatchNorm2d(pool_proj),             nn.ReLU(inplace=True)         )      def forward(self, x):         branch1_output = self.branch1(x)         branch2_output = self.branch2(x)         branch3_output = self.branch3(x)         branch4_output = self.branch4(x)          outputs = [branch1_output, branch2_output, branch3_output, branch4_output]         return torch.cat(outputs, 1)   class InceptionV1(nn.Module):     def __init__(self, num_classes=1000):         super(InceptionV1, self).__init__()         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)         self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)         self.conv2 = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=1)         self.conv3 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1)         self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)         self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)         self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)         self.maxpool3 = nn.MaxPool2d(3, stride=2)         self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)         self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)         self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)         self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)         self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)         self.maxpool4 = nn.MaxPool2d(2, stride=2)         self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)          self.inception5b = nn.Sequential(             inception_block(832, 384, 192, 384, 48, 128, 128),             nn.AvgPool2d(kernel_size=7, stride=1, padding=0),             nn.Dropout(0.4)         )         # 全连接网络层,用于分类         self.classifier = nn.Sequential(             nn.Linear(in_features=1024, out_features=1024),             nn.ReLU(),             nn.Linear(in_features=1024, out_features=num_classes),             nn.Softmax(dim=1)         )      def forward(self, x):         x = self.conv1(x)         x = F.relu(x)         x = self.maxpool1(x)         x = self.conv2(x)         x = F.relu(x)         x = self.conv3(x)         x = F.relu(x)         x = self.maxpool2(x)         x = self.inception3a(x)         x = self.inception3b(x)         x = self.maxpool3(x)          x = self.inception4a(x)         x = self.inception4b(x)         x = self.inception4c(x)         x = self.inception4d(x)         x = self.inception4e(x)         x = self.maxpool4(x)         x = self.inception5a(x)         x = self.inception5b(x)         x = torch.flatten(x, start_dim=1)         x = self.classifier(x)         return x;

2.查看模型信息

model = InceptionV1(4) model.to(device)  # 统计模型参数量以及其他指标 import torchsummary as summary  summary.summary(model, (3, 224, 224))

得到如下输出:

----------------------------------------------------------------         Layer (type)               Output Shape         Param # ================================================================             Conv2d-1         [-1, 64, 112, 112]           9,472          MaxPool2d-2           [-1, 64, 56, 56]               0             Conv2d-3           [-1, 64, 58, 58]           4,160             Conv2d-4          [-1, 192, 58, 58]         110,784          MaxPool2d-5          [-1, 192, 29, 29]               0             Conv2d-6           [-1, 64, 29, 29]          12,352        BatchNorm2d-7           [-1, 64, 29, 29]             128               ReLU-8           [-1, 64, 29, 29]               0             Conv2d-9           [-1, 96, 29, 29]          18,528       BatchNorm2d-10           [-1, 96, 29, 29]             192              ReLU-11           [-1, 96, 29, 29]               0            Conv2d-12          [-1, 128, 29, 29]         110,720       BatchNorm2d-13          [-1, 128, 29, 29]             256              ReLU-14          [-1, 128, 29, 29]               0            Conv2d-15           [-1, 16, 29, 29]           3,088       BatchNorm2d-16           [-1, 16, 29, 29]              32              ReLU-17           [-1, 16, 29, 29]               0            Conv2d-18           [-1, 32, 29, 29]           4,640       BatchNorm2d-19           [-1, 32, 29, 29]              64              ReLU-20           [-1, 32, 29, 29]               0         MaxPool2d-21          [-1, 192, 29, 29]               0            Conv2d-22           [-1, 32, 29, 29]           6,176       BatchNorm2d-23           [-1, 32, 29, 29]              64              ReLU-24           [-1, 32, 29, 29]               0   inception_block-25          [-1, 256, 29, 29]               0            Conv2d-26          [-1, 128, 29, 29]          32,896       BatchNorm2d-27          [-1, 128, 29, 29]             256              ReLU-28          [-1, 128, 29, 29]               0            Conv2d-29          [-1, 128, 29, 29]          32,896       BatchNorm2d-30          [-1, 128, 29, 29]             256              ReLU-31          [-1, 128, 29, 29]               0            Conv2d-32          [-1, 192, 29, 29]         221,376       BatchNorm2d-33          [-1, 192, 29, 29]             384              ReLU-34          [-1, 192, 29, 29]               0            Conv2d-35           [-1, 32, 29, 29]           8,224       BatchNorm2d-36           [-1, 32, 29, 29]              64              ReLU-37           [-1, 32, 29, 29]               0            Conv2d-38           [-1, 96, 29, 29]          27,744       BatchNorm2d-39           [-1, 96, 29, 29]             192              ReLU-40           [-1, 96, 29, 29]               0         MaxPool2d-41          [-1, 256, 29, 29]               0            Conv2d-42           [-1, 64, 29, 29]          16,448       BatchNorm2d-43           [-1, 64, 29, 29]             128              ReLU-44           [-1, 64, 29, 29]               0   inception_block-45          [-1, 480, 29, 29]               0         MaxPool2d-46          [-1, 480, 14, 14]               0            Conv2d-47          [-1, 192, 14, 14]          92,352       BatchNorm2d-48          [-1, 192, 14, 14]             384              ReLU-49          [-1, 192, 14, 14]               0            Conv2d-50           [-1, 96, 14, 14]          46,176       BatchNorm2d-51           [-1, 96, 14, 14]             192              ReLU-52           [-1, 96, 14, 14]               0            Conv2d-53          [-1, 208, 14, 14]         179,920       BatchNorm2d-54          [-1, 208, 14, 14]             416              ReLU-55          [-1, 208, 14, 14]               0            Conv2d-56           [-1, 16, 14, 14]           7,696       BatchNorm2d-57           [-1, 16, 14, 14]              32              ReLU-58           [-1, 16, 14, 14]               0            Conv2d-59           [-1, 48, 14, 14]           6,960       BatchNorm2d-60           [-1, 48, 14, 14]              96              ReLU-61           [-1, 48, 14, 14]               0         MaxPool2d-62          [-1, 480, 14, 14]               0            Conv2d-63           [-1, 64, 14, 14]          30,784       BatchNorm2d-64           [-1, 64, 14, 14]             128              ReLU-65           [-1, 64, 14, 14]               0   inception_block-66          [-1, 512, 14, 14]               0            Conv2d-67          [-1, 160, 14, 14]          82,080       BatchNorm2d-68          [-1, 160, 14, 14]             320              ReLU-69          [-1, 160, 14, 14]               0            Conv2d-70          [-1, 112, 14, 14]          57,456       BatchNorm2d-71          [-1, 112, 14, 14]             224              ReLU-72          [-1, 112, 14, 14]               0            Conv2d-73          [-1, 224, 14, 14]         226,016       BatchNorm2d-74          [-1, 224, 14, 14]             448              ReLU-75          [-1, 224, 14, 14]               0            Conv2d-76           [-1, 24, 14, 14]          12,312       BatchNorm2d-77           [-1, 24, 14, 14]              48              ReLU-78           [-1, 24, 14, 14]               0            Conv2d-79           [-1, 64, 14, 14]          13,888       BatchNorm2d-80           [-1, 64, 14, 14]             128              ReLU-81           [-1, 64, 14, 14]               0         MaxPool2d-82          [-1, 512, 14, 14]               0            Conv2d-83           [-1, 64, 14, 14]          32,832       BatchNorm2d-84           [-1, 64, 14, 14]             128              ReLU-85           [-1, 64, 14, 14]               0   inception_block-86          [-1, 512, 14, 14]               0            Conv2d-87          [-1, 128, 14, 14]          65,664       BatchNorm2d-88          [-1, 128, 14, 14]             256              ReLU-89          [-1, 128, 14, 14]               0            Conv2d-90          [-1, 128, 14, 14]          65,664       BatchNorm2d-91          [-1, 128, 14, 14]             256              ReLU-92          [-1, 128, 14, 14]               0            Conv2d-93          [-1, 256, 14, 14]         295,168       BatchNorm2d-94          [-1, 256, 14, 14]             512              ReLU-95          [-1, 256, 14, 14]               0            Conv2d-96           [-1, 24, 14, 14]          12,312       BatchNorm2d-97           [-1, 24, 14, 14]              48              ReLU-98           [-1, 24, 14, 14]               0            Conv2d-99           [-1, 64, 14, 14]          13,888      BatchNorm2d-100           [-1, 64, 14, 14]             128             ReLU-101           [-1, 64, 14, 14]               0        MaxPool2d-102          [-1, 512, 14, 14]               0           Conv2d-103           [-1, 64, 14, 14]          32,832      BatchNorm2d-104           [-1, 64, 14, 14]             128             ReLU-105           [-1, 64, 14, 14]               0  inception_block-106          [-1, 512, 14, 14]               0           Conv2d-107          [-1, 112, 14, 14]          57,456      BatchNorm2d-108          [-1, 112, 14, 14]             224             ReLU-109          [-1, 112, 14, 14]               0           Conv2d-110          [-1, 144, 14, 14]          73,872      BatchNorm2d-111          [-1, 144, 14, 14]             288             ReLU-112          [-1, 144, 14, 14]               0           Conv2d-113          [-1, 288, 14, 14]         373,536      BatchNorm2d-114          [-1, 288, 14, 14]             576             ReLU-115          [-1, 288, 14, 14]               0           Conv2d-116           [-1, 32, 14, 14]          16,416      BatchNorm2d-117           [-1, 32, 14, 14]              64             ReLU-118           [-1, 32, 14, 14]               0           Conv2d-119           [-1, 64, 14, 14]          18,496      BatchNorm2d-120           [-1, 64, 14, 14]             128             ReLU-121           [-1, 64, 14, 14]               0        MaxPool2d-122          [-1, 512, 14, 14]               0           Conv2d-123           [-1, 64, 14, 14]          32,832      BatchNorm2d-124           [-1, 64, 14, 14]             128             ReLU-125           [-1, 64, 14, 14]               0  inception_block-126          [-1, 528, 14, 14]               0           Conv2d-127          [-1, 256, 14, 14]         135,424      BatchNorm2d-128          [-1, 256, 14, 14]             512             ReLU-129          [-1, 256, 14, 14]               0           Conv2d-130          [-1, 160, 14, 14]          84,640      BatchNorm2d-131          [-1, 160, 14, 14]             320             ReLU-132          [-1, 160, 14, 14]               0           Conv2d-133          [-1, 320, 14, 14]         461,120      BatchNorm2d-134          [-1, 320, 14, 14]             640             ReLU-135          [-1, 320, 14, 14]               0           Conv2d-136           [-1, 32, 14, 14]          16,928      BatchNorm2d-137           [-1, 32, 14, 14]              64             ReLU-138           [-1, 32, 14, 14]               0           Conv2d-139          [-1, 128, 14, 14]          36,992      BatchNorm2d-140          [-1, 128, 14, 14]             256             ReLU-141          [-1, 128, 14, 14]               0        MaxPool2d-142          [-1, 528, 14, 14]               0           Conv2d-143          [-1, 128, 14, 14]          67,712      BatchNorm2d-144          [-1, 128, 14, 14]             256             ReLU-145          [-1, 128, 14, 14]               0  inception_block-146          [-1, 832, 14, 14]               0        MaxPool2d-147            [-1, 832, 7, 7]               0           Conv2d-148            [-1, 256, 7, 7]         213,248      BatchNorm2d-149            [-1, 256, 7, 7]             512             ReLU-150            [-1, 256, 7, 7]               0           Conv2d-151            [-1, 160, 7, 7]         133,280      BatchNorm2d-152            [-1, 160, 7, 7]             320             ReLU-153            [-1, 160, 7, 7]               0           Conv2d-154            [-1, 320, 7, 7]         461,120      BatchNorm2d-155            [-1, 320, 7, 7]             640             ReLU-156            [-1, 320, 7, 7]               0           Conv2d-157             [-1, 32, 7, 7]          26,656      BatchNorm2d-158             [-1, 32, 7, 7]              64             ReLU-159             [-1, 32, 7, 7]               0           Conv2d-160            [-1, 128, 7, 7]          36,992      BatchNorm2d-161            [-1, 128, 7, 7]             256             ReLU-162            [-1, 128, 7, 7]               0        MaxPool2d-163            [-1, 832, 7, 7]               0           Conv2d-164            [-1, 128, 7, 7]         106,624      BatchNorm2d-165            [-1, 128, 7, 7]             256             ReLU-166            [-1, 128, 7, 7]               0  inception_block-167            [-1, 832, 7, 7]               0           Conv2d-168            [-1, 384, 7, 7]         319,872      BatchNorm2d-169            [-1, 384, 7, 7]             768             ReLU-170            [-1, 384, 7, 7]               0           Conv2d-171            [-1, 192, 7, 7]         159,936      BatchNorm2d-172            [-1, 192, 7, 7]             384             ReLU-173            [-1, 192, 7, 7]               0           Conv2d-174            [-1, 384, 7, 7]         663,936      BatchNorm2d-175            [-1, 384, 7, 7]             768             ReLU-176            [-1, 384, 7, 7]               0           Conv2d-177             [-1, 48, 7, 7]          39,984      BatchNorm2d-178             [-1, 48, 7, 7]              96             ReLU-179             [-1, 48, 7, 7]               0           Conv2d-180            [-1, 128, 7, 7]          55,424      BatchNorm2d-181            [-1, 128, 7, 7]             256             ReLU-182            [-1, 128, 7, 7]               0        MaxPool2d-183            [-1, 832, 7, 7]               0           Conv2d-184            [-1, 128, 7, 7]         106,624      BatchNorm2d-185            [-1, 128, 7, 7]             256             ReLU-186            [-1, 128, 7, 7]               0  inception_block-187           [-1, 1024, 7, 7]               0        AvgPool2d-188           [-1, 1024, 1, 1]               0          Dropout-189           [-1, 1024, 1, 1]               0           Linear-190                 [-1, 1024]       1,049,600             ReLU-191                 [-1, 1024]               0           Linear-192                    [-1, 4]           4,100          Softmax-193                    [-1, 4]               0 ================================================================ Total params: 6,660,244 Trainable params: 6,660,244 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 71.97 Params size (MB): 25.41 Estimated Total Size (MB): 97.95 ----------------------------------------------------------------

三、 训练模型 

1. 编写训练函数

def train(dataloader, model, loss_fn, optimizer):     size = len(dataloader.dataset)  # 训练集的大小     num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)      train_loss, train_acc = 0, 0  # 初始化训练损失和正确率      for X, y in dataloader:  # 获取图片及其标签         X, y = X.to(device), y.to(device)          # 计算预测误差         pred = model(X)  # 网络输出         loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失          # 反向传播         optimizer.zero_grad()  # grad属性归零         loss.backward()  # 反向传播         optimizer.step()  # 每一步自动更新          # 记录acc与loss         train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()         train_loss += loss.item()      train_acc /= size     train_loss /= num_batches      return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader, model, loss_fn):     size = len(dataloader.dataset)  # 测试集的大小     num_batches = len(dataloader)  # 批次数目     test_loss, test_acc = 0, 0      # 当不进行训练时,停止梯度更新,节省计算内存消耗     with torch.no_grad():         for imgs, target in dataloader:             imgs, target = imgs.to(device), target.to(device)              # 计算loss             target_pred = model(imgs)             loss = loss_fn(target_pred, target)              test_loss += loss.item()             test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()      test_acc /= size     test_loss /= num_batches      return test_acc, test_loss

3.正式训练

import copy  optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = nn.CrossEntropyLoss()  # 创建损失函数  epochs = 10  train_loss = [] train_acc = [] test_loss = [] test_acc = []  best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标  for epoch in range(epochs):     # 更新学习率(使用自定义学习率时使用)     # adjust_learning_rate(optimizer, epoch, learn_rate)      model.train()     epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)     # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)      model.eval()     epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)      # 保存最佳模型到 best_model     if epoch_test_acc > best_acc:         best_acc = epoch_test_acc         best_model = copy.deepcopy(model)      train_acc.append(epoch_train_acc)     train_loss.append(epoch_train_loss)     test_acc.append(epoch_test_acc)     test_loss.append(epoch_test_loss)      # 获取当前的学习率     lr = optimizer.state_dict()['param_groups'][0]['lr']      template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')     print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,                           epoch_test_acc * 100, epoch_test_loss, lr))  # 保存最佳模型到文件中 PATH = './best_model.pth'  # 保存的参数文件名 torch.save(model.state_dict(), PATH)  print('Done')

得到如下输出:

Epoch: 1, Train_acc:63.6%, Train_loss:1.117, Test_acc:64.6%, Test_loss:1.101, Lr:1.00E-04 Epoch: 2, Train_acc:67.8%, Train_loss:1.053, Test_acc:70.2%, Test_loss:1.046, Lr:1.00E-04 Epoch: 3, Train_acc:74.7%, Train_loss:0.998, Test_acc:69.7%, Test_loss:1.042, Lr:1.00E-04 Epoch: 4, Train_acc:72.6%, Train_loss:1.015, Test_acc:69.9%, Test_loss:1.046, Lr:1.00E-04 Epoch: 5, Train_acc:74.7%, Train_loss:0.986, Test_acc:75.3%, Test_loss:0.990, Lr:1.00E-04 Epoch: 6, Train_acc:79.5%, Train_loss:0.949, Test_acc:75.3%, Test_loss:0.988, Lr:1.00E-04 Epoch: 7, Train_acc:80.3%, Train_loss:0.938, Test_acc:83.0%, Test_loss:0.907, Lr:1.00E-04 Epoch: 8, Train_acc:85.2%, Train_loss:0.889, Test_acc:83.2%, Test_loss:0.915, Lr:1.00E-04 Epoch: 9, Train_acc:85.8%, Train_loss:0.884, Test_acc:85.8%, Test_loss:0.887, Lr:1.00E-04 Epoch:10, Train_acc:87.9%, Train_loss:0.861, Test_acc:88.6%, Test_loss:0.859, Lr:1.00E-04 Done

四、 结果可视化

1. Loss&Accuracy

import matplotlib.pyplot as plt # 隐藏警告 import warnings  warnings.filterwarnings("ignore")  # 忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100  # 分辨率  epochs_range = range(epochs)  plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1)  plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy')  plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()

得到的可视化结果:

 2. 指定图片进行预测

首先,先定义出一个用于预测的函数:

from PIL import Image  classes = list(total_data.class_to_idx)   def predict_one_image(image_path, model, transform, classes):     test_img = Image.open(image_path).convert('RGB')     plt.imshow(test_img)  # 展示预测的图片      test_img = transform(test_img)     img = test_img.to(device).unsqueeze(0)      model.eval()     output = model(img)      _, pred = torch.max(output, 1)     pred_class = classes[pred]     print(f'预测结果是:{pred_class}')

接着调用函数对指定图片进行预测:

# 预测训练集中的某张照片 predict_one_image(image_path='./data/Others/NM01_01_01.jpg',                   model=model,                   transform=train_transforms,                   classes=classes) 

得到如下结果:

预测结果是:Others

五、网络介绍

1.简介

        Inception v1是一种深度卷积神经网络,该网络的最大特点是使用了Inception模块,该模块通过多种不同的卷积核来提取不同大小的特征图,并将这些特征图拼接在一起,从而同时考虑了不同尺度下的特征信息,提高了网络的准确性和泛化能力。

        在Inception v1中,Inception模块一般由1x1、3x3和5x5的卷积层以及一个最大池化层组成,同时还会在最后加上一个1x1的卷积层来减少通道数,从而避免参数过多的问题。

 2.结构

        另外增加了两个辅助分支,作用有两点,一是为了避免梯度消失,用于向前传导梯度。反向传播时如果有一层求导为0,链式求导结果则为0。二是将中间某一层输出用作分类,起到模型融合作用,实际测试时,这两个辅助softmax分支会被去掉,在后续模型的发展中,该方法被采用较少,可以直接绕过,重点学习卷积层的并行结构与1x1卷积核部分的内容即可。

        用PyTorch复现Inception v1,可以首先定义Inception模块,包括四个分支,每个分支使用不同的卷积核进行卷积操作。然后,将四个分支的输出在深度维度上拼接起来得到最终输出。可以使用PyTorch中的nn.Module来实现Inception模块。接下来,将多个Inception模块按照一定的顺序进行组合,形成完整的Inception v1网络结构。可以使用PyTorch中的nn.Sequential或nn.ModuleList来实现网络的组合。最后,通过反向传播优化网络参数,以达到训练的目的。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!