PyTorch 深度学习实践-卷积神经网络高级篇

avatar
作者
猴君
阅读量:2

视频指路
参考博客笔记
参考笔记二

文章目录

上课笔记

可以设置padding=‘same’ 使输入输出大小一致

10.1GoogleNet(Inception 层)

说明:Inception Moudel

1、卷积核超参数选择困难(提供四条变换路线输出要保证宽高一致,把结果concatenate到一起,效率高的权重大),自动找到卷积的最佳组合。

2、1x1卷积核,不同通道的信息融合。使用1x1卷积核虽然参数量增加了,但是能够显著的降低计算量(operations)

3、Inception Moudel由4个分支组成,要分清哪些是在Init里定义,哪些是在forward里调用。4个分支在dim=1(channels)上进行concatenate。24+16+24+24 = 88

4、GoogleNet的Inception(Pytorch实现)

在这里插入图片描述

下面是1*1卷积核计算过程

在这里插入图片描述

在5 *5 的卷积之前先进行一个1 * 1的卷积能有效降低运算量

比如:192 * 28 * 28经过一个5 * 5的卷积得到 32 * 28 * 28的输出运算为:

5^2 * 28 ^2 * 192 * 32=120422400

而中间先经过一个1 * 1的卷积再经过一个5 * 5的卷积得到 32 * 28 * 28的输出运算为:1^2 * 28^2 * 192 * 16 + 5^2 + 28^2 * 16 * 32 = 12433648

少了十倍

1*1卷积的主要作用有以下几点:

1、降维。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做11的卷积,那么结果的大小为500500*20。

2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励,提升网络的表达能力;

3、增加模型深度。可以减少网络模型参数,增加网络层深度,一定程度上提升模型的表征能力。

在这里插入图片描述

self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)          self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)         self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)          self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)         self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)         self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)          self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1) 

把上面四个卷积出的通道聚合(Concatenate),输出

outputs = [branch1*1, branch5*5, branch3*3, branch_pool]` return torch.cat(outputs, dim=1)#沿着通道c拼接起来 维度=1 

张量的维度是(b, c, h, w) batch, channel, width, height

在这里插入图片描述

代码实现

import torch import torch.nn as nn from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim  # prepare dataset  batch_size = 64 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 归一化,均值和方差  train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)   # design model using class class InceptionA(nn.Module):     def __init__(self, in_channels):         super(InceptionA, self).__init__()         self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)          self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)         self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)          self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)         self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)         self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)          self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)      def forward(self, x):         branch1x1 = self.branch1x1(x)          branch5x5 = self.branch5x5_1(x)         branch5x5 = self.branch5x5_2(branch5x5)          branch3x3 = self.branch3x3_1(x)         branch3x3 = self.branch3x3_2(branch3x3)         branch3x3 = self.branch3x3_3(branch3x3)          branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)         branch_pool = self.branch_pool(branch_pool)          outputs = [branch1x1, branch5x5, branch3x3, branch_pool]         return torch.cat(outputs, dim=1)  # b,c,w,h  c对应的是dim=1   class Net(nn.Module):     def __init__(self):         super(Net, self).__init__()         self.conv1 = nn.Conv2d(1, 10, kernel_size=5)         self.conv2 = nn.Conv2d(88, 20, kernel_size=5)  # 88 = 24x3 + 16          self.incep1 = InceptionA(in_channels=10)  # 与conv1 中的10对应         self.incep2 = InceptionA(in_channels=20)  # 与conv2 中的20对应          self.mp = nn.MaxPool2d(2)         self.fc = nn.Linear(1408, 10)      def forward(self, x):         in_size = x.size(0)         x = F.relu(self.mp(self.conv1(x)))         x = self.incep1(x)         x = F.relu(self.mp(self.conv2(x)))         x = self.incep2(x)         x = x.view(in_size, -1)         x = self.fc(x)          return x   model = Net()  # construct loss and optimizer criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)   # training cycle forward, backward, update   def train(epoch):     running_loss = 0.0     for batch_idx, data in enumerate(train_loader, 0):         inputs, target = data         optimizer.zero_grad()          outputs = model(inputs)         loss = criterion(outputs, target)         loss.backward()         optimizer.step()          running_loss += loss.item()         if batch_idx % 300 == 299:             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))             running_loss = 0.0   def test():     correct = 0     total = 0     with torch.no_grad():         for data in test_loader:             images, labels = data             outputs = model(images)             _, predicted = torch.max(outputs.data, dim=1)             total += labels.size(0)             correct += (predicted == labels).sum().item()     print('accuracy on test set: %。3f %% ' % (100 * correct / total))   if __name__ == '__main__':     for epoch in range(10):         train(epoch)         test() 

10.2 Residual Net

知识点:残差层定义

问题描述:卷积核层数不是越深越好,可能存在梯度消失

主要思路:引入残差连接,拼接后再激活,计算梯度的时候就能有所保留,要求输入输出大小相同

代码实现:定义残差块类,指定输入通道数,跳转拼接后再激活。模型构建时再定义相关层

跳连接:将H(x)的输入再加一个x,求导的时候x`=1,那么就算梯度很小也是将近于1,多个这样的数相乘梯度还是不为0,能解决梯度消失的情况,其中F(x)和x应该尺寸相同。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

class ResidualBlock(torch.nn.Module):     def __init__(self, channels):         super(ResidualBlock,self).__init__()         self.channels = channels  # 过残差连接输入输出通道不变         self.conv1 = torch.nn.Conv2d(channels, channels, 3,padding=1)#padding=1使得F(x)和x应该尺寸相同         self.conv2 = torch.nn.Conv2d(channels, channels, 3,padding=1)      def forward(self, x):         y = F.relu(self.conv1(x))         y = self.conv2(y)         return F.relu(x + y)  # 先求和再激活 

在这里插入图片描述

在这里插入图片描述

1.看一些深度学习理论方面的书比如花书

2.阅读pytorch文档,至少通读一遍

3.复现经典工作:先读代码,训练架构,测试架构,数据读取架构,损失函数怎么构建的,根据论文讲的东西自己去写

4.选一个特定领域阅读大量论文,看一下大家在设计网络的时候都用了什么技巧,想创新点

代码实现

import torch from torchvision import datasets from torch.utils.data import DataLoader from torchvision import transforms import torch.nn.functional as F  # 1.数据集准备 batch_size = 64 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/minist', train = True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=2) test_dataset = datasets.MNIST(root='../dataset/minist', train = False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size, num_workers=2)  # 2.模型构建 class ResidualBlock(torch.nn.Module):     def __init__(self, channels):         super(ResidualBlock,self).__init__()         self.channels = channels  # 过残差连接输入输出通道不变         self.conv1 = torch.nn.Conv2d(channels, channels, 3,padding=1)         self.conv2 = torch.nn.Conv2d(channels, channels, 3,padding=1)      def forward(self, x):         y = F.relu(self.conv1(x))         y = self.conv2(y)         return F.relu(x + y)  # 先求和再激活  class Net(torch.nn.Module):     def __init__(self):         super(Net, self).__init__()         self.c1 = torch.nn.Conv2d(1, 16, 5)         self.c2 = torch.nn.Conv2d(16, 32, 5)          self.rblock1 = ResidualBlock(16)  # 与conv1 中的16对应         self.rblock2 = ResidualBlock(32)  # 与conv2 中的32对应          self.mp = torch.nn.MaxPool2d(2)  # 图像缩小一半 12  (不要改步长啊)         self.l = torch.nn.Linear(512, 10)      def forward(self, x):         batch = x.size(0)         x = torch.relu(self.mp(self.c1(x)))  # b*10*12*12         x = self.rblock1(x)         x = torch.relu(self.mp(self.c2(x)))  # b*20*4*4         x = self.rblock2(x)         x = x.view(batch, -1)         # print(x.shape)         return self.l(x)   device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Net().to(device) # # 创建一个示例图像查看模型输出shape(好给全连接层赋值)----->输出:torch.Size([1, 1408]) # sample_image = torch.randn(1, 1, 28, 28)  # 1张图像,1个通道,28x28大小的图像 # output = model(sample_image)  # 3.损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 4.训练 def train(epoch):     running_loss = 0.0     for batch_idex, (x, y) in enumerate(train_loader):         x, y = x.to(device), y.to(device)         y_pred = model(x)         optimizer.zero_grad()         loss = criterion(y_pred, y)         running_loss += loss.item()         loss.backward()         optimizer.step()          if batch_idex % 300 == 299:             print(f'epoch{epoch+1}--------batch{batch_idex+1}-------loss={round(running_loss/300, 3)}')             running_loss = 0.0   def test():     total = 0     acc = 0     with torch.no_grad():         for (x, y) in test_loader:             x, y = x.to(device), y.to(device)             y_pred = model(x)             total += y_pred.size(0)             _, predicted = torch.max(y_pred, dim=1)             acc += (predicted == y).sum().item()     print('test= %.3f %%' % (100 * acc/total))   if __name__ == '__main__':     for epoch in range(10):         train(epoch)         test() 

练习:阅读Identity Mappings in Deep Residual Networks,Densely Connected Convolutional Networks,实现相关网络用minist数据集测试

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!