趣谈linux操作系统 9 网络系统-读书笔记

avatar
作者
猴君
阅读量:4

文章目录

网络协议栈基础知识回顾

网络分层

各网络分层协议的举例
网络分层

网络分层的目的

网络分层目的:因为网络环境过于复杂,不是一个能够集中控制的体系。全球数以亿计的服务器和设备各有各的体系,但是都可以通过同一套网络协议栈通过切分成多个层次和组合,来满足不同服务器和设备的通信需求。

举例:一个数据包的发送
报文发送
网络分层后,交换机只需要实现二层,路由器只需要实现二三层。

各层作用简介

以陆运运送货物为例子,类比网络分层的作用,此处片面的描述作用范围。
网络分层
经过三层转发时,每次源目的mac全部会变更,而源目的ip是肯定不会变的。
首先货物要包装好,然后发件人填写发件人的名字和收件人的名字(源目的端口号),填写收件人和发件人的地址(源目的ip),查看离自己最近的网点(比如某xx驿站)的地址把货物送出(默认路由和目的mac),货物会从网点出发,经过一个个中转站,最终把货物送达最后一个中转站,然后由中转站又到达了某某网点,快递员配送到收件人手中。

延伸-ip地址,有类,无类,cidr

ABCDE类ip地址
网络号主机号
可变长子网掩码
cidr

socket实现分析

操作系统选择对于网络协议的实现模式是,二到四层的处理代码在内核里面,七层的处理代码让应用自己去做,两者需要跨内核态和用户态通信,就需要一个系统调用完成这个衔接,这就是 Socket。

tcp/udp回顾

两个传输层协议的区别:

  • TCP 是面向连接的,UDP 是面向无连接的。
  • TCP 提供可靠交付,无差错、不丢失、不重复、并且按序到达;UDP 不提供可靠交付,不保证不丢失,不保证按顺序到达。
  • TCP 是面向字节流的,发送时发的是一个流,没头没尾;UDP 是面向数据报的,一个一个地发送。
  • TCP 是可以提供流量控制和拥塞控制的,既防止对端被压垮,也防止网络被压垮。

问题:

  1. 所谓的连接,容易让人误以为,使用 TCP 会使得两端之间的通路和使用 UDP 不一样,那我们会在沿途建立一条线表示这个连接吗?
  2. 我从中国访问美国网站,中间这么多环节,我怎么保证连接不断呢?
  3. 中间有个网络管理员拔了一根网线不就断了吗?我不能控制它,它也不会通知我,我一个个人电脑怎么能够保持连接呢?
  4. 还让我做流量控制和拥塞控制,我既管不了中间的链路,也管不了对端的服务器呀,我怎么能够做到?
  5. 按照网络分层,TCP 和 UDP 都是基于 IP 协议的,IP 都不能保证可靠,说丢就丢,TCP 怎么能够保证呢?
  6. IP 层都是一个包一个包地发送,TCP 怎么就变成流了?

解答:
1.连接代表一种状态,不是和广域网通信中电路交换一样有一条专用线路,实际tcp无法决定中间经过的线路。所谓的连接,就是两端数据结构状态的协同,两边的状态能够对得上。
2和3.符合 TCP 协议的规则,就认为连接存在;两面状态对不上,连接就算断了,所以中间环节的通断不代表tcp的通断
4.流量控制和拥塞控制其实就是根据收到的对端的网络包,调整两端数据结构的状态。TCP 协议的设计理论上认为,这样调整了数据结构的状态,就能进行流量控制和拥塞控制了,其实在通路上是不是真的做到了,谁也管不着。
5.所谓的可靠,也是两端的数据结构做的事情。不丢失其实是数据结构在“点名”,顺序到达其实是数据结构在“排序”,面向数据流其实是数据结构将零散的包,按照顺序捏成一个流发给应用层。总而言之,“连接”两个字让人误以为功夫在通路,其实功夫在两端
6.在上层接收者的角度,tcp的报文是流的形式。

socket编程回顾

int socket(int domain, int type, int protocol); 

socket 函数用于创建一个 socket 的文件描述符,唯一标识一个 socket。
socket 函数有三个参数,这里我们只讨论tcp/udp相关的。

  • domain:表示使用什么 IP 层协议。AF_INET 表示 IPv4,AF_INET6 表示 IPv6。
  • type:表示 socket 类型。SOCK_STREAM,顾名思义就是 TCP 面向流的,SOCK_DGRAM 就是 UDP 面向数据报的,SOCK_RAW 可以直接操作 IP 层。
  • protocol 表示的协议,包括 IPPROTO_TCP、IPPTOTO_UDP。
    返回值为句柄
    通信结束后,我们还要像关闭文件一样,关闭 socket。

TCP编程回顾

相关的系统API接口如下
tcp通信

UDP编程回顾

udp通信

差异

可以看到udp通信,没有listen-accept-connect,但是都有socket,bind,发送接收。udp不存在客户端和服务端的概念,大家就都是客户端,也同时都是服务端

socket相关接口实现浅析

用户态与内核态通信的最常用的方法就是系统调用,这里以socket系列函数为切入点,来学习内核的相关知识。

sokcet实现解析

创建socket的三个参数

在创建 Socket 的时候,有三个参数。
一个是 family,表示地址族。第二个参数是 type,也即 Socket 的类型。第三个参数是 protocol,是协议。协议数目是比较多的,也就是说,多个协议会属于同一种类型
接下来对这三个参数简单看一下。
首先是地址族

/* Supported address families. */ #define AF_UNSPEC	0 #define AF_UNIX		1	/* Unix domain sockets 		*/ #define AF_LOCAL	1	/* POSIX name for AF_UNIX	*/ #define AF_INET		2	/* Internet IP Protocol 	*/ ... #define AF_ATMPVC	8	/* ATM PVCs			*/ #define AF_X25		9	/* Reserved for X.25 project 	*/ #define AF_INET6	10	/* IP version 6			*/ ... #define AF_NETLINK	16 #define AF_ROUTE	AF_NETLINK /* Alias to emulate 4.4BSD */ #define c	17	/* Packet family		*/ ... #define AF_ATMSVC	20	/* ATM SVCs			*/ ... #define AF_ISDN		34	/* mISDN sockets 		*/ ... #define AF_MAX		41	/* For now.. */ 

其中比较常见的比如代表IPV4和IPV6的AF_INETAF_INET6,以及常用的域套接字AF_UNIX以及netlink的AF_NETLINK,还有二层的AF_PACKET;其中也有可能是广域网传输协议的ATM,X.25,ISDN等,他们都是广域网的基于分组交换的传输协议。像其中AF_ATMPVC为ATM的永久虚电路,AF_ATMSVC为交换虚电路。
接下来是socket类型

/**  * enum sock_type - Socket types  * @SOCK_STREAM: stream (connection) socket  * @SOCK_DGRAM: datagram (conn.less) socket  * @SOCK_RAW: raw socket  * @SOCK_RDM: reliably-delivered message  * @SOCK_SEQPACKET: sequential packet socket  * @SOCK_DCCP: Datagram Congestion Control Protocol socket  * @SOCK_PACKET: linux specific way of getting packets at the dev level.  *		  For writing rarp and other similar things on the user level.  *  * When adding some new socket type please  * grep ARCH_HAS_SOCKET_TYPE include/asm-* /socket.h, at least MIPS  * overrides this enum for binary compat reasons.  */ enum sock_type { 	SOCK_STREAM	= 1, 	SOCK_DGRAM	= 2, 	SOCK_RAW	= 3, 	SOCK_RDM	= 4, 	SOCK_SEQPACKET	= 5, 	SOCK_DCCP	= 6, 	SOCK_PACKET	= 10, }; 

解释如下:
SOCK_STREAM: 提供面向连接的稳定数据传输,流式传输。
SOCK_DGRAM: 使用不连续不可靠的数据包连接。
SOCK_SEQPACKET: 提供连续可靠的数据包连接。
SOCK_RAW: 提供原始网络协议存取。
SOCK_RDM: 提供可靠的数据包连接。
SOCK_DCCP: 数据报拥塞控制协议(Datagram Congestion Control Protocol)
SOCK_PACKET: 与网络驱动程序直接通信。
最后看下协议,先看inet4的:

/* Standard well-defined IP protocols.  */ enum {   IPPROTO_IP = 0,		/* Dummy protocol for TCP		*/ #define IPPROTO_IP		IPPROTO_IP   IPPROTO_ICMP = 1,		/* Internet Control Message Protocol	*/ #define IPPROTO_ICMP		IPPROTO_ICMP   IPPROTO_IGMP = 2,		/* Internet Group Management Protocol	*/ #define IPPROTO_IGMP		IPPROTO_IGMP   IPPROTO_IPIP = 4,		/* IPIP tunnels (older KA9Q tunnels use 94) */ ...   IPPROTO_RAW = 255,		/* Raw IP packets			*/ #define IPPROTO_RAW		IPPROTO_RAW   IPPROTO_MAX }; 

其实对于协议,每种协议族可能是不同的,比如netlink的protocol:

#define NETLINK_ROUTE		0	/* Routing/device hook				*/ #define NETLINK_UNUSED		1	/* Unused number				*/ #define NETLINK_USERSOCK	2	/* Reserved for user mode socket protocols 	*/ ... #define MAX_LINKS 32	 

再比如unix socket,更是限定了只能是0或者PF_UNIX。

socket函数定义及其参数

socket函数在内核中的定义为:

    SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)     {         //code     } 

Linux的系统调用在内核中的入口函数都是 sys_xxx ,因此socket的调用应该是:

    asmlinkage long sys_socket(int, int, int); 

真正定义代码不是sys_socket的原因可以参考之前系统初始化章节讲述的内容。简单来说,内核通过复杂的宏定义做了转换。这里只需要知道,在用户态调用socket后,后续就会陷入内核态来执行sys_socket就行了,也就是SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)这个宏所定义的函数。

接着看代码:

SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) {   int retval;   struct socket *sock;   int flags; ......   if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))     flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;    retval = sock_create(family, type, protocol, &sock); ......   retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); ......   return retval; } 

Socket 系统调用会调用 sock_create 创建一个 struct socket 结构,然后通过 sock_map_fd 和文件描述符对应起来。
下面分两步看socket的实现,即socket结构的创建与和文件描述符的关联。

创建socket结构体

前面提到的sock_create实际调用了__sock_create。

int sock_create(int family, int type, int protocol, struct socket **res) { 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); } 

代码主要逻辑如下:

int __sock_create(struct net *net, int family, int type, int protocol,        struct socket **res, int kern) {   int err;   struct socket *sock;   const struct net_proto_family *pf; ......   /*   *	Allocate the socket and allow the family to set things up. if   *	the protocol is 0, the family is instructed to select an appropriate   *	default.   */   sock = sock_alloc(); ......   sock->type = type;//类型在此处赋值 ......   pf = rcu_dereference(net_families[family]);  ......   err = pf->create(net, sock, protocol, kern); ......   *res = sock;    return 0; } 

可以看到代码中首先分配了一个 struct socket 结构。然后从net_families取了个net_proto_family类型的结构体的指指针用来初始化刚创建的socket结构体,最后返回回去。
在此处,所有类型的地址族都会在net_families中注册对应的结构体成员,并在此处可以用前面看过的family的参数取出注册的内容。
其结构体定义如下:

struct net_proto_family { 	int		family; 	int		(*create)(struct net *net, struct socket *sock, 				  int protocol, int kern); 	struct module	*owner; }; 

如上代码所述,实际调用的就是里面的create函数指针。
这里以几种常见协议族为例,看下注册的内容:

static const struct net_proto_family inet_family_ops = { 	.family = PF_INET, 	.create = inet_create, 	.owner	= THIS_MODULE, };  static const struct net_proto_family netlink_family_ops = { 	.family = PF_NETLINK, 	.create = netlink_create, 	.owner	= THIS_MODULE,	/* for consistency 8) */ };  static const struct net_proto_family packet_family_ops = { 	.family =	PF_PACKET, 	.create =	packet_create, 	.owner	=	THIS_MODULE, };  static const struct net_proto_family unix_family_ops = { 	.family = PF_UNIX, 	.create = unix_create, 	.owner	= THIS_MODULE, }; 

再以PF_INET为例看下注册,sock_register其实就是把ops注册到数组中去了:

	/* 	 *	Tell SOCKET that we are alive... 	 */  	(void)sock_register(&inet_family_ops); 

继续看inet_create的实现,只列出关键实现:

static int inet_create(struct net *net, struct socket *sock, int protocol, int kern) {   struct sock *sk;   struct inet_protosw *answer;   struct inet_sock *inet;   struct proto *answer_prot;   unsigned char answer_flags;   int try_loading_module = 0;   int err;    sock->state = SS_UNCONNECTED;//初始化socket状态      /* Look for the requested type/protocol pair. */ lookup_protocol:   list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {     err = 0;     /* Check the non-wild match. */     if (protocol == answer->protocol) {//比较是否是用户指定的协议       if (protocol != IPPROTO_IP)         break;     } else {       /* Check for the two wild cases. */       if (IPPROTO_IP == protocol) {         protocol = answer->protocol;         break;       }       if (IPPROTO_IP == answer->protocol)         break;     }     err = -EPROTONOSUPPORT;   } ......   sock->ops = answer->ops;//赋值   answer_prot = answer->prot;   answer_flags = answer->flags; ......   sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);//会在内部将answer_prot赋值给sk ......   inet = inet_sk(sk);   inet->nodefrag = 0;   if (SOCK_RAW == sock->type) {     inet->inet_num = protocol;//在这里指定协议     if (IPPROTO_RAW == protocol)       inet->hdrincl = 1;   }   inet->inet_id = 0;   sock_init_data(sock, sk);//将sk状态初始化为TCP_CLOSE    sk->sk_destruct     = inet_sock_destruct;   sk->sk_protocol     = protocol;   sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;    inet->uc_ttl  = -1;   inet->mc_loop  = 1;   inet->mc_ttl  = 1;   inet->mc_all  = 1;   inet->mc_index  = 0;   inet->mc_list  = NULL;   inet->rcv_tos  = 0;    if (inet->inet_num) {     inet->inet_sport = htons(inet->inet_num);     /* Add to protocol hash chains. */     err = sk->sk_prot->hash(sk);   }    if (sk->sk_prot->init) {     err = sk->sk_prot->init(sk);   } ...... } 

inetsw是一个数组,里面存储了各种socket类型对应的链表,链表中存储了inet_protosw结构体。
这里需要注意的是,可能是因为AF_INET协议族较为复杂,所以才使用了数组inetsw来存储inet的特定类型的特定协议的answer,然后从answer中取得ops,prot等。像unix socket,netlink socket,packet socket等, 都是直接从一个全局结构体变量取就可以了。
在inet_create 的 list_for_each_entry_rcu 循环中,会从 inetsw 数组中,根据 type 找到属于这个类型的列表,然后依次比较列表中的 struct inet_protosw 的 protocol 是不是用户指定的 protocol;如果是,就得到了符合用户指定的 family->type->protocol 的 struct inet_protosw *answer 对象。
而这个inet_protosw是在哪注册的呢?是在inet_init中注册的:

static int __init inet_init(void) { 	struct inet_protosw *q; 	struct list_head *r; 	int rc = -EINVAL; ... 	/* Register the socket-side information for inet_create. */ 	for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 		INIT_LIST_HEAD(r);  	for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 		inet_register_protosw(q);  ... 

上面的INIT_LIST_HEAD是给数组中每个类型的链表初始化,而后调用inet_register_protosw,将 inetsw_array 注册到 inetsw 数组里面去,即inetsw中按类型分链表,每个链表存储了同一类型的不同协议的inet_protosw结构体。而inetsw_array内容如下:

 /* Upon startup we insert all the elements in inetsw_array[] into  * the linked list inetsw.  */ static struct inet_protosw inetsw_array[] = { 	{ 		.type =       SOCK_STREAM, 		.protocol =   IPPROTO_TCP, 		.prot =       &tcp_prot, 		.ops =        &inet_stream_ops, 		.flags =      INET_PROTOSW_PERMANENT | 			      INET_PROTOSW_ICSK, 	},  	{ 		.type =       SOCK_DGRAM, 		.protocol =   IPPROTO_UDP, 		.prot =       &udp_prot, 		.ops =        &inet_dgram_ops, 		.flags =      INET_PROTOSW_PERMANENT,        },         { 		.type =       SOCK_DGRAM, 		.protocol =   IPPROTO_ICMP, 		.prot =       &ping_prot, 		.ops =        &inet_dgram_ops, 		.flags =      INET_PROTOSW_REUSE,        },         { 	       .type =       SOCK_RAW, 	       .protocol =   IPPROTO_IP,	/* wild card */ 	       .prot =       &raw_prot, 	       .ops =        &inet_sockraw_ops, 	       .flags =      INET_PROTOSW_REUSE,        } }; 

回到inet_create的代码,接下来,struct socket *sock 的 ops 成员变量,被赋值为 answer 的 ops。对于 TCP 来讲,就是 inet_stream_ops。后面任何用户对于这个 socket 的操作,都是通过 inet_stream_ops 进行的。

const struct proto_ops inet_stream_ops = { 	.family		   = PF_INET, 	.owner		   = THIS_MODULE, 	.release	   = inet_release, 	.bind		   = inet_bind, 	.connect	   = inet_stream_connect, 	.socketpair	   = sock_no_socketpair, 	.accept		   = inet_accept, 	.getname	   = inet_getname, 	.poll		   = tcp_poll, 	.ioctl		   = inet_ioctl, 	.listen		   = inet_listen, 	.shutdown	   = inet_shutdown, 	.setsockopt	   = sock_common_setsockopt, 	.getsockopt	   = sock_common_getsockopt, 	.sendmsg	   = inet_sendmsg, 	.recvmsg	   = inet_recvmsg, 	.mmap		   = sock_no_mmap, 	.sendpage	   = inet_sendpage, 	.splice_read	   = tcp_splice_read, #ifdef CONFIG_COMPAT 	.compat_setsockopt = compat_sock_common_setsockopt, 	.compat_getsockopt = compat_sock_common_getsockopt, 	.compat_ioctl	   = inet_compat_ioctl, #endif }; 

接下来,创建一个 struct sock *sk 对象。需要注意的是socket和sock这两个变量,socket 和 sock 看起来几乎一样,容易让人混淆,这里需要说明一下,socket 是用于负责对上给用户提供接口,并且和文件系统关联。而 sock,负责向下对接内核网络协议栈
在 sk_alloc 函数中,struct inet_protosw *answer 结构的 tcp_prot 赋值给了 struct sock *sk 的 sk_prot 成员。tcp_prot 的定义如下,里面定义了很多的函数,都是 sock 之下内核协议栈的动作。

struct proto tcp_prot = { 	.name			= "TCP", 	.owner			= THIS_MODULE, 	.close			= tcp_close, 	.connect		= tcp_v4_connect, 	.disconnect		= tcp_disconnect, 	.accept			= inet_csk_accept, 	.ioctl			= tcp_ioctl, 	.init			= tcp_v4_init_sock, 	.destroy		= tcp_v4_destroy_sock, 	.shutdown		= tcp_shutdown, 	.setsockopt		= tcp_setsockopt, 	.getsockopt		= tcp_getsockopt, 	.recvmsg		= tcp_recvmsg, 	.sendmsg		= tcp_sendmsg, ... }; 

因此很多ops调用的函数实际最后调用的是prot中的函数。比如ops中的recvmsg函数:

int inet_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 		 size_t size, int flags) { 	struct sock *sk = sock->sk; 	int addr_len = 0; 	int err;  	sock_rps_record_flow(sk);  	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 				   flags & ~MSG_DONTWAIT, &addr_len); 	if (err >= 0) 		msg->msg_namelen = addr_len; 	return err; } 

总的来说,proto_ops结构完成了从与协议无关的套接口层到协议相关的传输层的转接,而proto结构又将传输层映射到网络层
回到 inet_create 函数中,接下来创建一个 struct inet_sock 结构,这个结构一开始就是 struct sock,然后扩展了一些其他的信息,剩下的代码就填充这些信息。这一幕我们会经常看到,将一个结构放在另一个结构的开始位置,然后扩展一些成员,通过对于指针的强制类型转换,来访问这些成员。

关联文件描述符

接下来看sock_map_fd函数:

static int sock_map_fd(struct socket *sock, int flags) { 	struct file *newfile; 	int fd = get_unused_fd_flags(flags); 	if (unlikely(fd < 0)) 		return fd;  	newfile = sock_alloc_file(sock, flags, NULL); 	if (likely(!IS_ERR(newfile))) { 		fd_install(fd, newfile);//完成文件与进程的关联 		return fd; 	}  	put_unused_fd(fd); 	return PTR_ERR(newfile); } 

这里可以看到,先获取了一个未使用的文件句柄,然后创建一个socket文件,最后使用fd_install来对应,然后将这个fd返回,最终这个fd将返回给用户,至此sokcet创建结束。

bind实现解析

函数原型

int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen); 

成功返回0,否则返回-1
bind的实现少一点:

/*  *	Bind a name to a socket. Nothing much to do here since it's  *	the protocol's responsibility to handle the local address.  *  *	We move the socket address to kernel space before we call  *	the protocol layer (having also checked the address is ok).  */  SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) { 	struct socket *sock; 	struct sockaddr_storage address; 	int err, fput_needed;  	sock = sockfd_lookup_light(fd, &err, &fput_needed);//根据句柄找到对应的socket 	if (sock) { 		err = move_addr_to_kernel(umyaddr, addrlen, &address); 		if (err >= 0) { 			err = security_socket_bind(sock, 						   (struct sockaddr *)&address, 						   addrlen); 			if (!err) 				err = sock->ops->bind(sock, 						      (struct sockaddr *) 						      &address, addrlen); 		} 		fput_light(sock->file, fput_needed); 	} 	return err; } 

在 bind 中,sockfd_lookup_light 会根据 fd 文件描述符,找到 struct socket 结构。然后实际使用copy_from_user将 sockaddr 从用户态拷贝到内核态,然后调用 struct socket 结构里面 ops 的 bind 函数。根据前面创建 socket 的时候的设定,调用的是 inet_stream_ops 的 bind 函数,也即调用 inet_bind。

int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) {   struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;   struct sock *sk = sock->sk;   struct inet_sock *inet = inet_sk(sk);   struct net *net = sock_net(sk);   unsigned short snum; ......   snum = ntohs(addr->sin_port); ......   inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;//监听的ip地址   /* Make sure we are allowed to bind here. */   if ((snum || !inet->bind_address_no_port) &&       sk->sk_prot->get_port(sk, snum)) { ......   }   inet->inet_sport = htons(inet->inet_num);//监听的端口号,赋值在下面说明   inet->inet_daddr = 0;   inet->inet_dport = 0;   sk_dst_reset(sk); } 

bind 里面会调用 sk_prot 的 get_port 函数,也即 inet_csk_get_port 来检查端口是否冲突,是否可以绑定。
在get_port时会调用inet_bind_hash把inet_num设置为用户指定的接口

void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb,       const unsigned short snum) {  inet_sk(sk)->inet_num = snum;//用户sport赋值  sk_add_bind_node(sk, &tb->owners);  inet_csk(sk)->icsk_bind_hash = tb; } 

如果允许,则会设置 struct inet_sock 的本方的地址 inet_saddr 和本方的端口 inet_sport,对方的地址 inet_daddr 和对方的端口 inet_dport 都初始化为 0。

listen实现解析

原型

int listen(int sockfd, int backlog); 

backlog为最大连接数
成功返回0,失败返回-1

/*  *	Perform a listen. Basically, we allow the protocol to do anything  *	necessary for a listen, and if that works, we mark the socket as  *	ready for listening.  */  SYSCALL_DEFINE2(listen, int, fd, int, backlog) { 	struct socket *sock; 	int err, fput_needed; 	int somaxconn;  	sock = sockfd_lookup_light(fd, &err, &fput_needed); 	if (sock) { 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 		if ((unsigned int)backlog > somaxconn)//请求队列最大长度 			backlog = somaxconn;  		err = security_socket_listen(sock, backlog); 		if (!err) 			err = sock->ops->listen(sock, backlog);  		fput_light(sock->file, fput_needed); 	} 	return err; } 

在 listen 中,我们还是通过 sockfd_lookup_light,根据 fd 文件描述符,找到 struct socket 结构。接着,我们调用 struct socket 结构里面 ops 的 listen 函数。根据前面创建 socket 的时候的设定,调用的是inet_stream_ops 的 listen 函数,也即调用 inet_listen。

int inet_listen(struct socket *sock, int backlog) {   struct sock *sk = sock->sk;   unsigned char old_state;   int err;   old_state = sk->sk_state;   /* Really, if the socket is already in listen state    * we can only allow the backlog to be adjusted.    */   if (old_state != TCP_LISTEN) {     err = inet_csk_listen_start(sk, backlog);   }   sk->sk_max_ack_backlog = backlog; } 

如果这个 socket 还不在 TCP_LISTEN 状态,会调用 inet_csk_listen_start 进入监听状态。

int inet_csk_listen_start(struct sock *sk, int backlog) {   struct inet_connection_sock *icsk = inet_csk(sk);   struct inet_sock *inet = inet_sk(sk);   int err = -EADDRINUSE;    reqsk_queue_alloc(&icsk->icsk_accept_queue);    sk->sk_max_ack_backlog = backlog;   sk->sk_ack_backlog = 0;   inet_csk_delack_init(sk);    sk_state_store(sk, TCP_LISTEN);   if (!sk->sk_prot->get_port(sk, inet->inet_num)) { ......   } ...... } 

首先,我们遇到的是 icsk_accept_queue。它是干什么的呢?
在 TCP 的状态里面,有一个 listen 状态,当调用 listen 函数之后,就会进入这个状态,虽然我们写程序的时候,一般要等待服务端调用 accept 后,等待在哪里的时候,让客户端就发起连接。其实服务端一旦处于 listen 状态,不用 accept,客户端也能发起连接。其实 TCP 的状态中,没有一个是否被 accept 的状态,那 accept 函数的作用是什么呢?
在内核中,为每个 Socket 维护两个队列。一个是已经建立了连接的队列,这时候连接三次握手已经完毕,处于 established 状态;一个是还没有完全建立连接的队列,这个时候三次握手还没完成,处于 new_syn_rcvd 的状态。
服务端调用 accept 函数,其实是在第一个队列中拿出一个已经完成的连接进行处理。如果还没有完成就阻塞等待。这里的 icsk_accept_queue 就是第一个队列。因此后面解析accept时就会用到他。
初始化完之后,将 TCP 的状态设置为 TCP_LISTEN,再次调用 get_port 判断端口是否冲突。

accept实现解析

SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 		int __user *, upeer_addrlen) { 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); } 

实现:

 /*  *	For accept, we attempt to create a new socket, set up the link  *	with the client, wake up the client, then return the new  *	connected fd. We collect the address of the connector in kernel  *	space and move it to user at the very end. This is unclean because  *	we open the socket then return an error.  *  *	1003.1g adds the ability to recvmsg() to query connection pending  *	status to recvmsg. We need to add that support in a way thats  *	clean when we restucture accept also.  */  SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 		int __user *, upeer_addrlen, int, flags) { 	struct socket *sock, *newsock; 	struct file *newfile; 	int err, len, newfd, fput_needed; 	struct sockaddr_storage address; ... 	sock = sockfd_lookup_light(fd, &err, &fput_needed); 	if (!sock) 		goto out;  	err = -ENFILE; 	newsock = sock_alloc(); 	if (!newsock) 		goto out_put;  	newsock->type = sock->type; 	newsock->ops = sock->ops; ... 	newfd = get_unused_fd_flags(flags); 	if (unlikely(newfd < 0)) { 		err = newfd; 		sock_release(newsock); 		goto out_put; 	} 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 	if (unlikely(IS_ERR(newfile))) { 		err = PTR_ERR(newfile); 		put_unused_fd(newfd); 		sock_release(newsock); 		goto out_put; 	} ... 	err = sock->ops->accept(sock, newsock, sock->file->f_flags); 	if (err < 0) 		goto out_fd; ... 	/* File flags are not inherited via accept() unlike another OSes. */  	fd_install(newfd, newfile); 	err = newfd;  out_put: 	fput_light(sock->file, fput_needed); out: 	return err; out_fd: 	fput(newfile); 	put_unused_fd(newfd); 	goto out_put; } 

accept 函数的实现,印证了 socket 的原理中说的那样,原来的 socket 是监听 socket,这里我们会找到原来的 struct socket,并基于它去创建一个新的 newsock。这才是连接 socket。除此之外,我们还会创建一个新的 struct file 和 fd,并关联到 socket。
这里面还会调用 struct socket 的 sock->ops->accept,也即会调用 inet_stream_ops 的 accept 函数,也即 inet_accept。

 /*  *	Accept a pending connection. The TCP layer now gives BSD semantics.  */  int inet_accept(struct socket *sock, struct socket *newsock, int flags) { 	struct sock *sk1 = sock->sk; 	int err = -EINVAL; 	struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err);  	if (!sk2) 		goto do_err; ... 	sock_graft(sk2, newsock);//将新的sk和新的sock关联  	newsock->state = SS_CONNECTED;//如果上面accept返回,则变为已连接 ...	 }   static inline void sock_graft(struct sock *sk, struct socket *parent) { ...	 	parent->sk = sk; 	sk_set_socket(sk, parent); 	sk->sk_uid = SOCK_INODE(parent)->i_uid; ...	 } 

inet_accept 会调用 struct sock 的 sk1->sk_prot->accept,也即 tcp_prot 的 accept 函数,inet_csk_accept 函数。

/*  * This will accept the next outstanding connection.  */ struct sock *inet_csk_accept(struct sock *sk, int flags, int *err) { 	struct inet_connection_sock *icsk = inet_csk(sk); 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;//这里的队列就是listen中初始化的全连接队列										 	struct sock *newsk; 	struct request_sock *req; 	int error; ... 	/* Find already established connection */ 	if (reqsk_queue_empty(queue)) { 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);  		/* If this is a non blocking socket don't sleep */ 		error = -EAGAIN; 		if (!timeo) 			goto out_err;  		error = inet_csk_wait_for_connect(sk, timeo); 		if (error) 			goto out_err; 	} 	req = reqsk_queue_remove(queue); 	newsk = req->sk; ... out: 	release_sock(sk); 	if (req) 		__reqsk_free(req); 	return newsk; ... } 

这里用到了前面listen初始化的队列icsk_accept_queue,如果 icsk_accept_queue 为空,则调用 inet_csk_wait_for_connect 进行等待;等待的时候,调用 schedule_timeout,让出 CPU,并且将进程状态设置为 TASK_INTERRUPTIBLE。

/*  * Wait for an incoming connection, avoid race conditions. This must be called  * with the socket locked.  */ static int inet_csk_wait_for_connect(struct sock *sk, long timeo) {   struct inet_connection_sock *icsk = inet_csk(sk);   DEFINE_WAIT(wait);   int err;   for (;;) {     prepare_to_wait_exclusive(sk_sleep(sk), &wait,             TASK_INTERRUPTIBLE);     release_sock(sk);     if (reqsk_queue_empty(&icsk->icsk_accept_queue))       timeo = schedule_timeout(timeo);     sched_annotate_sleep();     lock_sock(sk);     err = 0;     if (!reqsk_queue_empty(&icsk->icsk_accept_queue))       break;     err = -EINVAL;     if (sk->sk_state != TCP_LISTEN)       break;     err = sock_intr_errno(timeo);     if (signal_pending(current))       break;     err = -EAGAIN;     if (!timeo)       break;   }   finish_wait(sk_sleep(sk), &wait);   return err; } 

如果再次 CPU 醒来,我们会接着判断 icsk_accept_queue 是否为空,同时也会调用 signal_pending 看有没有信号可以处理。一旦 icsk_accept_queue 不为空,就从 inet_csk_wait_for_connect 中返回,在队列中取出一个 struct sock 对象赋值给 newsk。
因此accept就是检查是否有人连接,如果有就返回一个新的socket。当执行accept后,sk->sk_state仍为TCP_LISTEN
那这个队列什么时候不为空呢?当三次握手结束就可以,因此下面解析的是connect函数的实现。

connect实现解析

connect入口
SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,     int, addrlen) {   struct socket *sock;   struct sockaddr_storage address;   int err, fput_needed;   sock = sockfd_lookup_light(fd, &err, &fput_needed);   err = move_addr_to_kernel(uservaddr, addrlen, &address);   err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, sock->file->f_flags); } 

差不多的流程,实际调用 inet_stream_ops 的 connect 函数,也即调用 inet_stream_connect。

/*  *  Connect to a remote host. There is regrettably still a little  *  TCP 'magic' in here.  */ int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,         int addr_len, int flags, int is_sendmsg) {   struct sock *sk = sock->sk;   int err;   long timeo;    switch (sock->state) { ......   case SS_UNCONNECTED:     err = -EISCONN;     if (sk->sk_state != TCP_CLOSE)//socket刚创建后sk->sk_state被初始化为TCP_CLOSE       goto out;      err = sk->sk_prot->connect(sk, uaddr, addr_len);     sock->state = SS_CONNECTING;//设置socket状态为SS_CONNECTING     break;   }    timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);    if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { ......     if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))//非SYC_SEND和SYC_RECV状态后退出       goto out;      err = sock_intr_errno(timeo);     if (signal_pending(current))       goto out;   }     sock->state = SS_CONNECTED;//三次握手完毕,设置socket状态为SS_CONNECTED } 

在inet_create中,state已被初始化为SS_UNCONNECTED,调用 struct sock 的 sk->sk_prot->connect,也即 tcp_prot 的 connect 函数——tcp_v4_connect 函数,用来发送SYC报文并把sk->sk_state设为TCPF_SYN_SENT。这里先把inet_wait_for_connect看完,马上再看tcp_v4_connect :

static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) { ... 	/* Basic assumption: if someone sets sk->sk_err, he _must_ 	 * change state of the socket from TCP_SYN_*. 	 * Connect() does not allow to get error notifications 	 * without closing the socket. 	 */ 	while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 		release_sock(sk); 		timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 		lock_sock(sk); 		if (signal_pending(current) || !timeo) 			break; 	} 	remove_wait_queue(sk_sleep(sk), &wait); 	sk->sk_write_pending -= writebias; 	return timeo; } 

这里是在等待不是TCPF_SYN_SENT | TCPF_SYN_RECV就会退出。
接下来看下SYC报文的发送,也即tcp_v4_connect。

TCP连接建立处理过程分析

三次握手-客户端发送SYC报文
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) {   struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;   struct inet_sock *inet = inet_sk(sk);   struct tcp_sock *tp = tcp_sk(sk);   __be16 orig_sport, orig_dport;   __be32 daddr, nexthop;   struct flowi4 *fl4;   struct rtable *rt; ......   nexthop = daddr = usin->sin_addr.s_addr; ......	   orig_sport = inet->inet_sport;   orig_dport = usin->sin_port;   rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,             RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,             IPPROTO_TCP,             orig_sport, orig_dport, sk);//路由查找 ......   tcp_set_state(sk, TCP_SYN_SENT);//在此处改变状态,即sk->sk_state   err = inet_hash_connect(tcp_death_row, sk);   sk_set_txhash(sk);   rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,              inet->inet_sport, inet->inet_dport, sk);   /* OK, now commit destination to socket.  */   sk->sk_gso_type = SKB_GSO_TCPV4;   sk_setup_caps(sk, &rt->dst);     if (likely(!tp->repair)) {     if (!tp->write_seq)       tp->write_seq = secure_tcp_seq(inet->inet_saddr,//序列号处理                    inet->inet_daddr,                    inet->inet_sport,                    usin->sin_port);     tp->tsoffset = secure_tcp_ts_off(sock_net(sk),              inet->inet_saddr,              inet->inet_daddr);   }   rt = NULL; ......   err = tcp_connect(sk);//发送SYC报文处理 ...... } 

在 tcp_v4_connect 函数中,ip_route_connect 其实是做一个路由的选择。为什么呢?因为三次握手马上就要发送一个 SYN 包了,这就要凑齐源地址、源端口、目标地址、目标端口。目标地址和目标端口是服务端的,已经知道源端口是客户端随机分配的,源地址应该用哪一个呢?这时候要选择一条路由,看从哪个网卡出去,就应该填写哪个网卡的 IP 地址。接下来,在调用tcp_connect发送 SYN 之前,我们先将客户端 socket 的状态设置为 TCP_SYN_SENT。然后初始化 TCP 的 seq num,也即 write_seq,然后调用 tcp_connect 进行发送。
继续看tcp_connect:

/* Build a SYN and send it off. */ int tcp_connect(struct sock *sk) {   struct tcp_sock *tp = tcp_sk(sk);   struct sk_buff *buff;   int err; ......   tcp_connect_init(sk); ......   buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); ......   tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);//初始化SYC报文   tcp_mstamp_refresh(tp);   tp->retrans_stamp = tcp_time_stamp(tp);   tcp_connect_queue_skb(sk, buff);   tcp_ecn_send_syn(sk, buff);    /* Send off SYN; include data in Fast Open. */   err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :         tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);//发送SYC报文 ......   tp->snd_nxt = tp->write_seq;   tp->pushed_seq = tp->write_seq;   buff = tcp_send_head(sk);   if (unlikely(buff)) {     tp->snd_nxt  = TCP_SKB_CB(buff)->seq;     tp->pushed_seq  = TCP_SKB_CB(buff)->seq;   } ......   /* Timer for repeating the SYN until an answer. */   inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);//重复发送SYC直到接收到回复   return 0; } 

接着回到sock->ops->connect那里,后面调用inet_wait_for_connect 等待服务端的ACK。此时客户端的sk_state为TCP_SYN_SENT。

三次握手-服务端接收SYC,回复SYC-ACK

接下来看服务端的处理,服务端此时处于调用完accept之后的TCP_LISTEN状态。在服务端要接收这个SYC报文,在经过ip_local_deliver_finish后,会调用ip_protocol_deliver_rcu来进行下一步处理,也就是ip层及之上协议的处理,这个函数中通过inet_protos找到对应的handler,具体怎么注册的这里略过,大概调用顺序如下:
收包

对应变量如下:

static const struct net_protocol tcp_protocol = { 	.handler	=	tcp_v4_rcv, 	.err_handler	=	tcp_v4_err, 	.no_policy	=	1, 	.icmp_strict_tag_validation = 1, }; 

对于tcp的协议,调用handler,即tcp_v4_rcv进行处理,当还没收到SYC报文时,此时sock->sk_state还处于TCP_LISTEN状态,所以进入如下处理:

int tcp_v4_rcv(struct sk_buff *skb) { ... 	if (sk->sk_state == TCP_LISTEN) { 		ret = tcp_v4_do_rcv(sk, skb); 		goto put_and_return; 	} ... } 

tcp_v4_do_rcv继续调用tcp_rcv_state_process,

/* The socket must have it's spinlock held when we get  * here, unless it is a TCP_LISTEN socket.  *  * We have a potential double-lock case here, so even when  * doing backlog processing we use the BH locking scheme.  * This is because we cannot sleep with the original spinlock  * held.  */ int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) { 	struct sock *rsk;  	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ ... 	}  	if (tcp_checksum_complete(skb)) 		goto csum_err;  	if (sk->sk_state == TCP_LISTEN) { 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);  		if (!nsk) 			goto discard; 		if (nsk != sk) { 			if (tcp_child_process(sk, nsk, skb)) { 				rsk = nsk; 				goto reset; 			} 			return 0; 		} 	} else 		sock_rps_save_rxhash(sk, skb);  	if (tcp_rcv_state_process(sk, skb)) { 		rsk = sk; 		goto reset; 	} 	return 0; ... } 

因为CONFIG_SYN_COOKIES未开启,tcp_child_process未走到(通过gdb断点确认),直接执行tcp_rcv_state_process。
顾名思义,tcp_rcv_state_process是用来处理接收一个网络包后引起状态变化的。

int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) {   struct tcp_sock *tp = tcp_sk(sk);   struct inet_connection_sock *icsk = inet_csk(sk);   const struct tcphdr *th = tcp_hdr(skb);   struct request_sock *req;   int queued = 0;   bool acceptable;    switch (sk->sk_state) { ......   case TCP_LISTEN: ......     if (th->syn) {//接收到SYC报文           acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;       if (!acceptable)         return 1;       consume_skb(skb);       return 0;     } ...... } 

目前服务端是处于 TCP_LISTEN 状态的,而且发过来的包是 SYN,因而就有了上面的代码,调用 icsk->icsk_af_ops->conn_request 函数。这个函数是在tcp对应的proto的init函数中赋值的。

icsk->icsk_af_ops = &ipv4_specific; ... const struct inet_connection_sock_af_ops ipv4_specific = { 	.queue_xmit	   = ip_queue_xmit, 	.send_check	   = tcp_v4_send_check, 	.rebuild_header	   = inet_sk_rebuild_header, 	.sk_rx_dst_set	   = inet_sk_rx_dst_set, 	.conn_request	   = tcp_v4_conn_request,//这个函数 	.syn_recv_sock	   = tcp_v4_syn_recv_sock, 	.net_header_len	   = sizeof(struct iphdr), 	.setsockopt	   = ip_setsockopt, 	.getsockopt	   = ip_getsockopt, 	.addr2sockaddr	   = inet_csk_addr2sockaddr, 	.sockaddr_len	   = sizeof(struct sockaddr_in), 	.mtu_reduced	   = tcp_v4_mtu_reduced, }; 

因此实际调用的是调用的是 tcp_v4_conn_request。tcp_v4_conn_request 会调用 tcp_conn_request,这个函数也比较长,里面调用了 send_synack,但实际调用的是 tcp_v4_send_synack。

int tcp_conn_request(struct request_sock_ops *rsk_ops,          const struct tcp_request_sock_ops *af_ops,          struct sock *sk, struct sk_buff *skb) { ... 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);//状态在此改变 	if (!req) 		goto drop; ...... 	if (fastopen_sk) { 		... 	} else {//通过gdb确认走此分支 		tcp_rsk(req)->tfo_listener = false; 		if (!want_cookie) { 			req->timeout = tcp_timeout_init((struct sock *)req); 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 		} 		af_ops->send_synack(sk, dst, &fl, req, &foc, 				    !want_cookie ? TCP_SYNACK_NORMAL : 						   TCP_SYNACK_COOKIE, 				    skb); 		if (want_cookie) { 			reqsk_free(req); 			return 0; 		} 	} ...... }  struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 				      struct sock *sk_listener, 				      bool attach_listener) { 	struct request_sock *req = reqsk_alloc(ops, sk_listener, 					       attach_listener);  	if (req) { 		struct inet_request_sock *ireq = inet_rsk(req);  		ireq->ireq_opt = NULL; #if IS_ENABLED(CONFIG_IPV6) 		ireq->pktopts = NULL; #endif 		atomic64_set(&ireq->ir_cookie, 0); 		ireq->ireq_state = TCP_NEW_SYN_RECV;//ireq状态改变 		write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 		ireq->ireq_family = sk_listener->sk_family; 	}  	return req; }   /*  *	Send a SYN-ACK after having received a SYN.  *	This still operates on a request_sock only, not on a big  *	socket.  */ static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 			      struct flowi *fl, 			      struct request_sock *req, 			      struct tcp_fastopen_cookie *foc, 			      enum tcp_synack_type synack_type, 			      struct sk_buff *syn_skb) { 	const struct inet_request_sock *ireq = inet_rsk(req); 	struct flowi4 fl4; 	int err = -1; 	struct sk_buff *skb; 	u8 tos;  	/* First, grab a route. */ 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 		return -1; 	//构造报文 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);  	if (skb) { 		... 		if (!INET_ECN_is_capable(tos) && 		    tcp_bpf_ca_needs_ecn((struct sock *)req)) 			tos |= INET_ECN_ECT_0;  		rcu_read_lock(); 		//发送报文 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 					    ireq->ir_rmt_addr, 					    rcu_dereference(ireq->ireq_opt), 					    tos); 		rcu_read_unlock(); 		err = net_xmit_eval(err); 	}  	return err; } 

具体发送的过程略过,看注释我们能知道,这是收到了 SYN 后,回复一个 SYN-ACK,回复完毕后,服务端处于 TCP_SYN_RECV。

三次握手-客户端接收SYC-ACK,回复ACK

服务端的SYC-ACK发送完毕,看客户端的接收处理,还是tcp_rcv_state_process 函数,只不过由于客户端目前处于 TCP_SYN_SENT 状态,就进入了下面的代码分支。

int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) {   struct tcp_sock *tp = tcp_sk(sk);   struct inet_connection_sock *icsk = inet_csk(sk);   const struct tcphdr *th = tcp_hdr(skb);   struct request_sock *req;   int queued = 0;   bool acceptable;    switch (sk->sk_state) { ......   case TCP_SYN_SENT:     tp->rx_opt.saw_tstamp = 0;     tcp_mstamp_refresh(tp);     queued = tcp_rcv_synsent_state_process(sk, skb, th);     if (queued >= 0)       return queued;     /* Do step6 onward by hand. */     tcp_urg(sk, skb, th);     __kfree_skb(skb);     tcp_data_snd_check(sk);     return 0;   } ...... }  static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 					 const struct tcphdr *th) { ... 	if (th->ack) {  ... 		tcp_finish_connect(sk, skb);//设置状态为TCP_ESTABLISHED ... 			tcp_send_ack(sk);//回复ack报文 		} ... 	} ... }  void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) { 	struct tcp_sock *tp = tcp_sk(sk); 	struct inet_connection_sock *icsk = inet_csk(sk);  	tcp_set_state(sk, TCP_ESTABLISHED); 	... } 

tcp_rcv_synsent_state_process 会调用 tcp_send_ack,发送一个 ACK-ACK,发送后客户端处于 TCP_ESTABLISHED 状态。

三次握手-服务端接收ACK报文
//SYC_RECV状态的sock创建 //理解结构复用非常重要!!!! //前面接收syn后的ireq->ireq_state = TCP_NEW_SYN_RECV;  //和此处的sk->sk_state == TCP_NEW_SYN_RECV;其实是一个结构体 /*  *	From tcp_input.c  */  int tcp_v4_rcv(struct sk_buff *skb) { 	... 	if (sk->sk_state == TCP_NEW_SYN_RECV) { 		struct request_sock *req = inet_reqsk(sk); 		bool req_stolen = false; 		struct sock *nsk; 	... 	{ 		... 		if (!tcp_filter(sk, skb)) { 			th = (const struct tcphdr *)skb->data; 			iph = ip_hdr(skb); 			tcp_v4_fill_cb(skb, iph, th); 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 		} 		... 		if (nsk == sk) { 			reqsk_put(req); 			tcp_v4_restore_cb(skb); 		} else if (tcp_child_process(sk, nsk, skb)) {//走此分支,nsk替代request_sock继续处理 			tcp_v4_send_reset(nsk, skb); 			goto discard_and_relse; 		} else { 			sock_put(sk); 			return 0;//处理ok,返回 		} 	} 	 	... }   /*  * Process an incoming packet for SYN_RECV sockets represented as a  * request_sock. Normally sk is the listener socket but for TFO it  * points to the child socket.  *  * XXX (TFO) - The current impl contains a special check for ack  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?  *  * We don't need to initialize tmp_opt.sack_ok as we don't use the results  */  struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 			   struct request_sock *req, 			   bool fastopen, bool *req_stolen) { 	... 	/* OK, ACK is valid, create big socket and 	 * feed this segment to it. It will repeat all 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO 	 * ESTABLISHED STATE. If it will be dropped after 	 * socket is created, wait for troubles. 	 */ 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 							 req, &own_req); 	if (!child) 		goto listen_overflow;  	if (own_req && rsk_drop_req(req)) { 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 		inet_csk_reqsk_queue_drop_and_put(sk, req); 		return child; 	}  	sock_rps_save_rxhash(child, skb); 	tcp_synack_rtt_meas(child, req); 	*req_stolen = !own_req; 	return inet_csk_complete_hashdance(sk, child, req, own_req);//从半连接队列删除,添加到全连接队列,下方用gdb确认 	... 	 }   /*  * The three way handshake has completed - we got a valid synack -  * now create the new socket.  */ struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 				  struct request_sock *req, 				  struct dst_entry *dst, 				  struct request_sock *req_unhash, 				  bool *own_req) { 	... 	newsk = tcp_create_openreq_child(sk, req, skb); 	if (!newsk) 		goto exit_nonewsk; 	... }  /* This is not only more efficient than what we used to do, it eliminates  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM  *  * Actually, we could lots of memory writes here. tp of listening  * socket contains all necessary default parameters.  */ struct sock *tcp_create_openreq_child(const struct sock *sk, 				      struct request_sock *req, 				      struct sk_buff *skb) { 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); 	... }   /**  *	inet_csk_clone_lock - clone an inet socket, and lock its clone  *	@sk: the socket to clone  *	@req: request_sock  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)  *  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))  */ struct sock *inet_csk_clone_lock(const struct sock *sk, 				 const struct request_sock *req, 				 const gfp_t priority) { 	struct sock *newsk = sk_clone_lock(sk, priority);  	if (newsk) { 		struct inet_connection_sock *newicsk = inet_csk(newsk);  		inet_sk_set_state(newsk, TCP_SYN_RECV); 	... }  

调用流程为:tcp_v4_rcv->tcp_rcv_state_process->tcp_check_req->inet_csk(sk)->icsk_af_ops->syn_recv_sock->tcp_v4_syn_recv_sock->tcp_create_openreq_child
调用栈如下:

#0  tcp_create_openreq_child (sk=sk@entry=0xffff000019188000, req=req@entry=0xffff0000192d6000, skb=skb@entry=0xffff000019185a00) at net/ipv4/tcp_minisocks.c:460 #1  0xffff8000106fc7a0 in tcp_v4_syn_recv_sock (sk=0xffff000019188000, skb=0xffff000019185a00, req=0xffff0000192d6000, dst=0x0, req_unhash=0xffff0000192d6000, own_req=0xffff80001163b66f) at net/ipv4/tcp_ipv4.c:1521 #2  0xffff8000107882bc in tcp_v6_syn_recv_sock (sk=0xffff000019188000, skb=0xffff000019185a00, req=<optimized out>, dst=<optimized out>, req_unhash=<optimized out>, own_req=0xffff80001163b66f) at net/ipv6/tcp_ipv6.c:1216 #3  0xffff8000106ff664 in tcp_check_req (sk=sk@entry=0xffff000019188000, skb=skb@entry=0xffff000019185a00, req=req@entry=0xffff0000192d6000, fastopen=fastopen@entry=false, req_stolen=req_stolen@entry=0xffff80001163b737) at ./include/net/inet_connection_sock.h:147 #4  0xffff8000106fe418 in tcp_v4_rcv (skb=0xffff000019185a00) at net/ipv4/tcp_ipv4.c:1992 ... 

其中上面还涉及从半连接队列删除添加到全连接队列的流程:

struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 					 struct request_sock *req, bool own_req) { 	if (own_req) { 		inet_csk_reqsk_queue_drop(sk, req);//从半连接队列删除 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);//维护计数 		if (inet_csk_reqsk_queue_add(sk, req, child))//添加到全连接队列 			return child; 	} 	/* Too bad, another child took ownership of the request, undo. */ 	bh_unlock_sock(child); 	sock_put(child); 	return NULL; } //request_sock放置于icsk_accept_queue,实际承载了新socket的sk struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 				      struct request_sock *req, 				      struct sock *child) { 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;  	spin_lock(&queue->rskq_lock); 	if (unlikely(sk->sk_state != TCP_LISTEN)) { 		... 	} else { 		req->sk = child; 		... 		queue->rskq_accept_tail = req; 		... 	} 	spin_unlock(&queue->rskq_lock); 	return child; }  

调用栈如下

Thread 65 hit Breakpoint 15, inet_csk_reqsk_queue_add (sk=sk@entry=0xffff000019188000, req=req@entry=0xffff0000191cb260, child=child@entry=0xffff000014dd9bc0) at ./include/linux/spinlock.h:354 354             raw_spin_lock(&lock->rlock); (gdb) bt #0  inet_csk_reqsk_queue_add (sk=sk@entry=0xffff000019188000, req=req@entry=0xffff0000191cb260, child=child@entry=0xffff000014dd9bc0) at ./include/linux/spinlock.h:354 #1  0xffff8000106de0f4 in inet_csk_complete_hashdance (sk=sk@entry=0xffff000019188000, child=child@entry=0xffff000014dd9bc0, req=req@entry=0xffff0000191cb260, own_req=<optimized out>) at net/ipv4/inet_connection_sock.c:998 #2  0xffff8000106ff6a4 in tcp_check_req (sk=sk@entry=0xffff000019188000, skb=skb@entry=0xffff000014c53200, req=req@entry=0xffff0000191cb260, fastopen=fastopen@entry=false, req_stolen=req_stolen@entry=0xffff80001163b737) at net/ipv4/tcp_minisocks.c:786 #3  0xffff8000106fe418 in tcp_v4_rcv (skb=0xffff000014c53200) at net/ipv4/tcp_ipv4.c:1992 ... 

先看下结构的内容

/* struct request_sock - mini sock to represent a connection request  */ struct request_sock { 	struct sock_common		__req_common; #define rsk_refcnt			__req_common.skc_refcnt #define rsk_hash			__req_common.skc_hash #define rsk_listener			__req_common.skc_listener #define rsk_window_clamp		__req_common.skc_window_clamp #define rsk_rcv_wnd			__req_common.skc_rcv_wnd  	struct request_sock		*dl_next; 	u16				mss; 	u8				num_retrans; /* number of retransmits */ 	u8				syncookie:1; /* syncookie: encode tcpopts in timestamp */ 	u8				num_timeout:7; /* number of timeouts */ 	u32				ts_recent; 	struct timer_list		rsk_timer; 	const struct request_sock_ops	*rsk_ops; 	struct sock			*sk; 	struct saved_syn		*saved_syn; 	u32				secid; 	u32				peer_secid; 	u32				timeout; };  struct sock { 	/* 	 * Now struct inet_timewait_sock also uses sock_common, so please just 	 * don't add nothing before this first member (__sk_common) --acme 	 */ 	struct sock_common	__sk_common; 	... } 

再看下半连接和全连接队列的结构体和函数

//注意两个队列间转移的流程  //添加全连接inet_csk_reqsk_queue_add 添加半连接inet_csk_reqsk_queue_hash_add /** struct request_sock_queue - queue of request_socks  *  * @rskq_accept_head - FIFO head of established children  * @rskq_accept_tail - FIFO tail of established children  * @rskq_defer_accept - User waits for some data after accept()  *  */ struct request_sock_queue { 	spinlock_t		rskq_lock; 	u8			rskq_defer_accept;  	u32			synflood_warned; 	atomic_t		qlen;//半连接request_sock数量 	atomic_t		young;  	struct request_sock	*rskq_accept_head;//存储全连接request_sock 	struct request_sock	*rskq_accept_tail;//存储全连接request_sock 	struct fastopen_queue	fastopenq;  /* Check max_qlen != 0 to determine 					     * if TFO is enabled. 					     */ }; 

回到最开始的tcp_v4_rcv,当nsk!=sk,会调用tcp_child_process

int tcp_child_process(struct sock *parent, struct sock *child, 		      struct sk_buff *skb) 	__releases(&((child)->sk_lock.slock)) { 	int ret = 0; 	int state = child->sk_state; 	... 	 	//没有用户进程读取套接字 	if (!sock_owned_by_user(child)) { 		//使用newsk继续处理 		ret = tcp_rcv_state_process(child, skb); 		/* Wakeup parent, send SIGIO */ 		if (state == TCP_SYN_RECV && child->sk_state != state) 			parent->sk_data_ready(parent); 	} else { 		/* Alas, it is possible again, because we do lookup 		 * in main socket hash table and lock on listening 		 * socket does not protect us more. 		 */ 		__sk_add_backlog(child, skb); 	}  	bh_unlock_sock(child); 	sock_put(child); 	return ret; } 

继续看tcp_rcv_state_process

/*  *	This function implements the receiving procedure of RFC 793 for  *	all states except ESTABLISHED and TIME_WAIT.  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be  *	address independent.  */  int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) { 	... 	switch (sk->sk_state) { 	case TCP_SYN_RECV: 		... 		tcp_set_state(sk, TCP_ESTABLISHED); 		sk->sk_state_change(sk);  		/* Note, that this wakeup is only for marginal crossed SYN case. 		 * Passively open sockets are not waked up, because 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 		 */ 		if (sk->sk_socket) 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 		... 	} 	... } 

调用栈如下:

Thread 65 hit Breakpoint 14, tcp_set_state (sk=sk@entry=0xffff00001918dc80, state=state@entry=1) at net/ipv4/tcp.c:2282 2282            int oldstate = sk->sk_state; (gdb) bt #0  tcp_set_state (sk=sk@entry=0xffff00001918dc80, state=state@entry=1) at net/ipv4/tcp.c:2282 #1  0xffff8000106f10f8 in tcp_rcv_state_process (sk=sk@entry=0xffff00001918dc80, skb=skb@entry=0xffff00001900f600) at net/ipv4/tcp_input.c:6403 #2  0xffff8000106feb2c in tcp_child_process (parent=parent@entry=0xffff000019188000, child=child@entry=0xffff00001918dc80, skb=skb@entry=0xffff00001900f600) at net/ipv4/tcp_minisocks.c:838 #3  0xffff8000106fe438 in tcp_v4_rcv (skb=0xffff00001900f600) at net/ipv4/tcp_ipv4.c:2011 ... 

此时三次握手成功,全连接队列中会放置新的sock,等待被处理。

函数调用总览图

总体流程

状态变化总览图

tcp-state

linux内核中的面向对象

linux内核有面向对象,可以参考文章
封装
继承 比如各种sock结构体
多态 比如同一个socket创建函数中根据对象不同,调用的creat方法不同

linux内核socket实现变动

socket相关实现在新版本与旧版本有变化,特别是服务端接收ack包的流程,差异特别大
比如tcp_v4_do_rcv 变化较大,半连接队列的存放位置,检查位置均改变。通过新的状态 NEW_SYNC_RECV引入,使半连接队列检查提前。

数据包的发送与接收

数据包发送

数据包接收

报文通过虚拟网卡上送内核协议栈

一般三层交换机的虚接口是通过tun/tap接口实现的,一个vlan包含多个member port,也就是真实的二层口,而一个二层口也可以有多个allowed vlan。

真实的物理口收包后在sdk解包获得vlan id,并通过向tun/tap设备写入来达到上送协议栈的的目的。

内核态在tun_get_user从用户态的缓冲区收包。

转发流程简述

参考资料
Linux原始套接字实现分析
深入理解Linux网络——TCP连接建立过程(三次握手源码详解)
深入理解TCP协议及其源代码

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!