DevOps概念及搭建全过程(Jenkins、Harbor、SonarQube、K8s)

avatar
作者
筋斗云
阅读量:0

DevOps入门及过程搭建

在如今互联网的格局下,抢占市场变得尤为重要,因此敏捷开发越来越被大家所推崇。于是,慢慢的有了DevOps这个概念,大致意思是开发-运维一体化。

1 DevOps概念

1.1 基本概念

在这里插入图片描述

可以看到上图是一个无穷大的一个符号,Dev对应开发,Ops对应运维。

  • DevOps的方式可以让公司能够更快地应对更新和市场发展变化,开发可以快速交付,部署也更加稳定。
  • 核心就在于简化Dev和Ops团队之间的流程,使整体软件开发过程更快速。

1.2 流程

DevOps的开发过程及常用工具:
在这里插入图片描述
整体的软件开发流程包括:

  • PLAN:开发团队根据客户的目标制定开发计划
  • CODE:根据PLAN开始编码过程,需要将不同版本的代码存储在一个库中。
  • BUILD:编码完成后,需要将代码构建并且运行。
  • TEST:成功构建项目后,需要测试代码是否存在BUG或错误。
  • DEPLOY:代码经过手动测试和自动化测试后,认定代码已经准备好部署并且交给运维团队。
  • OPERATE:运维团队将代码部署到生产环境中。
  • MONITOR:项目部署上线后,需要持续的监控产品。
  • INTEGRATE:然后将监控阶段收到的反馈发送回PLAN阶段,整体反复的流程就是DevOps的核心,即持续集成、持续部署。

总的来说就是:

  1. Code阶段(编码):Git+GitLab
  2. Build阶段(构建):Maven或Gradle
  3. Operate(运行):Docker
  4. Integrate(集成):Jenkins
    • CI/CD(持续集成):操作Jenkins,编写对应脚本文件
    • Code review(代码质量检测):Jenkins集成Sonar Qube
    • 自定义镜像:Harbor
    • Jenkins流水线操作
    • WebHook:通知操作,如:钉钉机器人通知
  5. K8S编排:更加方便我们管理容器

2 搭建DevOps环境

本项目全部采用docker安装,如果服务器上没有docker环境的,
参考:https://editor.csdn.net/md/?articleId=127816970安装即可。

  • 也可以参考本文档的2.2 Docker 章节

2.1 GitLab

在项目的Code(编码)阶段,我们需要将不同版本的代码存储到一个仓库中,常见的版本控制工具就是SVN或者Git,这里我们采用Git作为版本控制工具,GitLab作为远程仓库。

git的安装:参考官网,无脑下一步即可 官网地址:https://git-scm.com/ 

GitLab安装:

  1. 查看docker上gitlab的镜像,并拉取
# 查看镜像 docker search gitlab  # 拉取镜像 docker pull gitlab/gitlab-ce 
  1. 准备docker-compose.yml文件

文档中的external_url等参考自己服务器上的ip

version: '3.1' services:   gitlab:     image: 'gitlab/gitlab-ce:latest'     container_name: gitlab     restart: always     environment:       GITLAB_OMNIBUS_CONFIG: |         external_url 'http://192.168.11.11:8929'         gitlab_rails['gitlab_shell_ssh_port'] = 2224     ports:       - '8929:8929'       - '2224:2224'     volumes:       - './config:/etc/gitlab'       - './logs:/var/log/gitlab'       - './data:/var/opt/gitlab' 
  1. 启动容器,并访问
# 启动容器 docker-compose up -d 

访问:http://192.168.11.11:8929即可。
效果:
在这里插入图片描述
4. 查看初始的用户名和密码

docker exec -it gitlab cat /etc/gitlab/initial_root_password 

在这里插入图片描述
5. 登录并修改密码

以root身份登录gitlab,首次登录需要修改密码

在这里插入图片描述
在这里插入图片描述

然后我们就可以像GitHub、Gitee一样操作GitLab了

2.2 Docker

构建Java项目的工具一般有两种选择,一个是Maven,一个是Gradle。

  • 这里我们选择Maven作为项目的编译工具。
  • 具体安装Maven流程不做阐述,但是需要确保配置好Maven仓库私服以及JDK编译版本。

部署过程,会采用Docker进行部署,暂时只安装Docker即可,后续还需安装Kubenetes

2.2.1 Docker安装

①准备测试环境&生产环境

②下载Docker依赖组件

yum -y install yum-utils device-mapper-persistent-data lvm2 

③设置下载Docker的镜像源为阿里云

yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 

④安装docker服务

yum -y install docker-ce 

⑤设置docker开机自启

# 启动Docker服务 systemctl start docker # 设置开机自动启动 systemctl enable docker 

⑥测试安装成功

docker version 
2.2.2 Docker-compose安装
# 设置文件权限 chmod a+x docker-compose-Linux-x86_64 # 移动到/usr/bin目录下,并重命名为docker-compose mv docker-compose-Linux-x86_64 /usr/bin/docker-compose 

2.3 Jenkins

2.3.1 介绍

在DevOps中持续集成和持续部署是很重要的一个环节,类似的工具也有很多,其中Jenkins是一个开源的持续集成平台。
Jenkins涉及到将编写完毕的代码发布到测试环境和生产环境的任务,并且还涉及到了构建项目等任务。

Jenkins需要大量的插件保证工作,安装成本较高,下面会基于Docker搭建Jenkins。

  • Jenkins是一个开源项目,基于Java开发的
  • 大多数互联网公司都是采永Jenkins配合GitLab、Docker、K8s作为DevOps的核心工具
  • Jenkins官方提供了大量的插件库,用于完成自动化的CI/CD过程。

在这里插入图片描述
Jenkins主要工作:

  1. 拉取GitLab上的代码并进行构建
  2. 根据流程可以选择发布到测试环境或是生产环境

GitLab上的代码经过大量测试后,确定发型版本,再发布到生产环境

在这里插入图片描述
CI/CD概念:

  • CI过程:JenKins将代码拉取、构建、制作镜像交给测试人员
    • 持续集成:让软件代码可以持续的集成到主干上,并自动构建和测试
  • CD过程:通过Jenkins将打好标签的发行版本代码进行拉取、构建、制作镜像后交给运维人员部署
    • 持续交付:让经过持续集成的代码可以进行手动部署
    • 持续部署:让可以持续交付的代码随时随地的自动化部署
2.3.2 Jenkins安装
  1. 拉取镜像
docker pull jenkins/jenkins 
  1. 编写对应的docker-compose.yml
version: "3.1" services:   jenkins:     image: jenkins/jenkins     container_name: jenkins     ports:       - 8080:8080       - 50000:50000     volumes:       - ./data/:/var/jenkins_home/ 
  1. 设置数据卷data目录的权限,否则会包没有对应权限
chmod -R a+w data/ 
  1. 设置Jenkins的下载地址

重新启动Jenkins容器后,由于Jenkins需要下载大量内容,但是由于默认下载地址下载速度较慢,需要重新设置下载地址为国内镜像站

# 修改数据卷中的hudson.model.UpdateCenter.xml文件 <?xml version='1.1' encoding='UTF-8'?> <sites>   <site>     <id>default</id>     <url>https://updates.jenkins.io/update-center.json</url>   </site> </sites> # 将下载地址替换为http://mirror.esuni.jp/jenkins/updates/update-center.json <?xml version='1.1' encoding='UTF-8'?> <sites>   <site>     <id>default</id>     <url>http://mirror.esuni.jp/jenkins/updates/update-center.json</url>   </site> </sites> # 清华大学的插件源也可以https://mirrors.tuna.tsinghua.edu.cn/jenkins/updates/update-center.json 
  1. 再次重启Jenkins容器,访问JenKins
    在这里插入图片描述
  2. 查看JenKins登录密码,并登录JenKins然后安装对应插件
docker exec -it jenkins cat /var/jenkins_home/secrets/initialAdminPassword 

输入管理员密码 - 选择插件来安装 - 选择对应的插件进行安装

推荐安装:
①Git Parameter
②Publish Over SSH

在这里插入图片描述
然后等待插件安装成功进入首页。(可能会出现下载失败的插件,重新下载即可)
7. 创建管理员用户,设置Jenkins URL
在这里插入图片描述

2.3.3 Jenkins实现拉取-构建-发布

准备好GitLab仓库中的项目,并且通过Jenkins配置实现当前项目的DevOps流程。(Idea创建之后推送到远程即可)

  1. 构建Maven工程发布到GitlLab、Gitee、GitHub均可

  2. 点击Jenkins左侧新建任务(选择自由风格的项目)

  3. 配置源码拉取地址
    在这里插入图片描述

  4. 点击立即构建,查看构建日志
    在这里插入图片描述
    在这里插入图片描述

  5. 配置Maven构建代码

代码拉取到Jenkins本地后,需要在Jenkins中对代码进行构建,这里需要Maven的环境,而Maven需要Java的环境,接下来需要在Jenkins中安装JDK和Maven,并且配置到Jenkins服务。

  • 准备jdk、maven压缩包,通过数据卷映射到Jenkins容器内部
    在这里插入图片描述
  • 解压压缩包,并配置Maven的settings.xml
<!-- 阿里云镜像地址 --> <mirror>       <id>alimaven</id>       <name>aliyun maven</name>       <url>http://maven.aliyun.com/nexus/content/groups/public/</url>     <mirrorOf>central</mirrorOf>           </mirror> <!-- JDK1.8编译插件 --> <profile>     <id>jdk-1.8</id>     <activation>         <activeByDefault>true</activeByDefault>         <jdk>1.8</jdk>     </activation>     <properties>         <maven.compiler.source>1.8</maven.compiler.source>         <maven.compiler.target>1.8</maven.compiler.target>         <maven.compiler.compilerVersion>1.8</maven.compiler.compilerVersion>     </properties>         </profile> 
  • Jenkins配置JDK&Maven并保存
    在这里插入图片描述
    maven配置同理
  • 配置Jenkins任务构建代码
    在这里插入图片描述
  • 立即构建测试,查看target下的jar包
    在这里插入图片描述
  1. 配置Publish发布&远程操作

jar包构建好后,就可以根据情况发布到测试或者生产环境,此处需要用到之前下载好的插件Publish Over SSH

  • 配置Publish Over SSH连接测试环境、生产环境
    在这里插入图片描述
  • 配置任务构建后的操作,发布jar包到目标服务
    在这里插入图片描述

在这里插入图片描述

  • 立即构建任务,并去目标服务查看
    在这里插入图片描述
2.3.4 CI/CD操作
  • 基于Jenkins拉取GitLab的SpringBoot代码进行构建发布到测试环境实现持续集成
  • 基于Jenkins拉取GitLab指定发行版本的SpringBoot进行构建发布到生产环境实现CD(持续部署)

为了让程序代码可以自动推送到测试环境基于Docker服务运行,需要添加Docker配置和脚本文件让程序可以在集成到主干的同时运行起来。

①持续集成

  1. 添加Dockerfile文件
    在这里插入图片描述

  2. 添加docker-compose.yml文件
    在这里插入图片描述

  3. 追加Jenkins构建后操作脚本命令
    在这里插入图片描述

  4. 发布到GitLab后由Jenkins立即构建并推送到目标服务器
    在这里插入图片描述

  5. 测试部署到目标服务器程序
    在这里插入图片描述
    ②持续交付、部署

程序代码在经过多次集成操作到达最终可以交付,持续交付整体流程和持续集成类似,不过需要选取指定的发行版本

  • 下载Git Parameter插件
    在这里插入图片描述

  • 设置项目参数化构建
    在这里插入图片描述
    在这里插入图片描述

  • 在GitLab上给项目添加tag版本
    在这里插入图片描述

  • 任务构建时,采用Shell方式构建,拉取指定tag版本
    在这里插入图片描述

  • 基于Parameter构建任务,任务发布到目标服务器
    在这里插入图片描述

2.4 Sonar Qube

2.4.1 Sonar Qube介绍与安装

Sonar Qube是一个开源的代码分析平台,支持Java、Python、PHP、JavaScript、CSS等25种以上的语言,可以检测出重复代码、代码漏洞、代码规范和安全性漏洞的问题。

  • Sonar Qube可以与多种软件整合进行代码扫描,比如:Maven、Gradle、Git、Jenkins等,并且会将代码检测结果推送回Sonar Qube,进而在系统提供的UI界面上显示出来。

在这里插入图片描述
安装过程:

Sonar Qube在7.9版本中已经放弃了对MySQL的支持,并且建议在商业环境中采用PostgreSQL,那么安装Sonar Qube时需要依赖PostgreSQL。

①拉取PostgreSQL镜像

docker pull postgres docker pull sonarqube:8.9.3-community 

②编写docker-compose.yml

更易管理

version: "3.1" services:   db:     image: postgres     container_name: db     ports:       - 5432:5432     networks:       - sonarnet     environment:       POSTGRES_USER: sonar       POSTGRES_PASSWORD: sonar   sonarqube:     image: sonarqube:8.9.3-community     container_name: sonarqube     depends_on:       - db     ports:       - "9000:9000"     networks:       - sonarnet     environment:       SONAR_JDBC_URL: jdbc:postgresql://db:5432/sonar       SONAR_JDBC_USERNAME: sonar       SONAR_JDBC_PASSWORD: sonar networks:   sonarnet:     driver: bridge 

③设置sysctl.conf文件信息,并启动容器
在这里插入图片描述

设置vm.max_map_count=262144,至少是这个数

# 执行命令进行刷新 sysctl -p  # 启动容器 docker-compose up -d 

重新启动需要一定时间,可以查看容器日志,如果看到如下内容代表启动成功

在这里插入图片描述
④访问Sonar Qube首页
在这里插入图片描述

登录成功之后,会要求我们修改默认密码

首页图片:
在这里插入图片描述

  • 安装中文插件
    在这里插入图片描述

安装成功后需要重启,若安装失败,重新点击install即可

2.4.2 Sonar Qube基本使用

Sonar Qube的使用方式很多,Maven可以整合,也可以采用sonar-scanner的方式,再查看Sonar Qube的检测效果

①Maven实现代码检测
  • 修改配置文件信息

修改本地Maven的settings.xml文件,配置Sonar Qube信息

<profile>     <id>sonar</id>     <activation>         <activeByDefault>true</activeByDefault>     </activation>     <properties>         <sonar.login>admin</sonar.login>         <sonar.password>123456789</sonar.password>         <sonar.host.url>http://192.168.11.11:9000</sonar.host.url>     </properties> </profile> 
  • 在代码所在位置的cmd执行命令mvn sonar:sonar
    在这里插入图片描述
  • 检测结果:
    在这里插入图片描述
②Sonar-scanner实现代码检测
  • 下载对应版本
  • 下载Sonar-scanner:https://binaries.sonarsource.com/Distribution/sonar-scanner-cli/
  • 下载4.6.x版本即可,要求Linux版本
  • 解压并配置sonar服务端信息

下载下来的Sonar-scanner是zip压缩包,因此需要在linux上安装unzip插件

# 安装unzip解压插件 yum -y install unzip  # 解压压缩包 unzip sonar-scanner-cli/sonar-scanner-cli-4.6.0.2311-linux.zip 

配置sonarQube服务端地址,修改conf下的sonar-scanner.properties
在这里插入图片描述

  • 执行命令检测代码
# 在项目所在目录执行以下命令 ~/sonar-scanner/bin/sonar-scanner -Dsonar.sources=./ -Dsonar.projectname=demo -Dsonar.projectKey=java -Dsonar.java.binaries=target/ 

在这里插入图片描述

  • 查看SonarQube界面检测结果
    在这里插入图片描述
③Jenkins集成Sonar Qube

Jenkins集成Sonar Qube实现代码扫描需要下载整合插件

  1. Jenkins安装插件【系统管理-插件管理】
  2. 安装SonarQube Scanner插件
    在这里插入图片描述
  3. Jenkins配置Sonar Qube

在SonarQube中开启Sonar Qube的权限验证
在这里插入图片描述
在Sonar Qube中生成一个令牌,获取Sonar Qube的令牌
在这里插入图片描述

  • 在Jenkins中配置Sonar Qube信息

Dashboard - 系统配置

在这里插入图片描述
在这里插入图片描述

  • 在Jenkins中配置Sonar-scanner

将Sonar-scanner添加到Jenkins数据卷中并全局配置
在这里插入图片描述

  • 配置任务的Sonar-scanner
    在这里插入图片描述
  1. 构建任务

Jenkins界面:
在这里插入图片描述
SonarQube界面:
在这里插入图片描述

2.5 Harbor(镜像仓库)

2.5.1 Harbor介绍与安装

  • 介绍

前面我们在部署时,主要流程如下:

  1. Jenkins推送jar包到服务器
  2. 通过脚本命令让目标服务器对当前jar进行部署

但是这种方式在项目比较多的时候,每个服务器都需要将jar包制作成自定义镜像,然后再通过docker进行启动,重复操作较多,降低部署效率。

Harbor:私有的Docker镜像仓库。我们可以让Jenkins统一将项目打包并制作成Docker镜像发布到Harbor仓库中。然后我们只需要通知目标服务,让目标服务统一去Harbor仓库上拉取镜像并在本地部署即可。

  • 安装(通过原生的方式安装)
  1. 下载Harbor安装包
    https://github.com/goharbor/harbor/releases/download/v2.3.4/harbor-offline-installer-v2.3.4.tgz
  2. 传送到linux上并解压
# 通过xftp或其他方式将压缩包传送到linux上 # 解压 tar -zxvf harbor-offline-installer-v2.3.4.tgz -C /usr/local/ 
  1. 修改Harbor配置文件

设置harbor地址,注释https,查看密码

# 备份原有配置 cp harbor.yml.tmpl harbor.yml 

在这里插入图片描述
4. 启动Harbor并登录Harbor

# 启动Harbor ./install.sh 

在这里插入图片描述
首页信息:
在这里插入图片描述

2.5.2 Harbor基础使用

Harbor作为镜像仓库,主要的交互方式就是将镜像上传到Harbor,以及从Harbor上下载拉取指定版本的镜像。

  • 在传输镜像前,可以先使用Harbor提供的权限管理,将项目设置为私有项目,并对不同用户设置不同角色,从而更方便管理镜像。
①添加用户构建项目
  • 创建用户

系统管理-用户管理-创建用户
在这里插入图片描述

  • 构建项目(设置为私有)
    在这里插入图片描述
  • 给项目追加用户
    在这里插入图片描述
②发布镜像到Harbor
  • 修改镜像名称

名称要求:harbor地址/项目名/镜像名:版本
在这里插入图片描述

  • 修改daemon.json,支持Docker仓库,并重启Docker
    在这里插入图片描述
  • 设置登录仓库信息
docker login -u 用户名 -p 密码 Harbor地址 
  • 推送镜像到Harbor
    在这里插入图片描述
③从Harbor中拉取镜像

跟传统方式一样,不过需要先配置/etc/docker/daemon.json文件

{         "registry-mirrors": ["https://pee6w651.mirror.aliyuncs.com"],         "insecure-registries": ["192.168.11.11:80"] } 

拉取镜像:
在这里插入图片描述

拓展:Jenkins容器使用宿主机Docker并编写构建脚本
  • 构建镜像和发布镜像到harbor都需要使用到docker命令。而在Jenkins容器内部安装Docker官方推荐直接采用宿主机带的Docker即可。

①设置Jenkins容器使用宿主机Docker

  1. 设置宿主机docker.sock权限
sudo chown root:root /var/run/docker.sock sudo chmod o+rw /var/run/docker.sock 
  1. 添加数据卷
version: "3.1" services:   jenkins:     image: jenkins/jenkins     container_name: jenkins     ports:       - 8080:8080       - 50000:50000     volumes:       - ./data/:/var/jenkins_home/       - /usr/bin/docker:/usr/bin/docker       - /var/run/docker.sock:/var/run/docker.sock       - /etc/docker/daemon.json:/etc/docker/daemon.json 

②添加构建操作
在这里插入图片描述
③编写构建脚本

  • 部署项目需要通过Publish Over SSH插件,让目标服务器执行命令。为了方便一次性实现拉取镜像和启动的命令,推荐采用脚本文件的方式。
  • 添加脚本文件到目标服务器,再通过Publish Over SSH插件让目标服务器执行脚本即可。
  1. 编写脚本文件,添加到目标服务器

deploy.sh:

harbor_url=$1 harbor_project_name=$2 project_name=$3 tag=$4 port=$5  imageName=$harbor_url/$harbor_project_name/$project_name:$tag  containerId=`docker ps -a | grep ${project_name} | awk '{print $1}'` if [ "$containerId" != "" ] ; then     docker stop $containerId     docker rm $containerId     echo "Delete Container Success" fi  imageId=`docker images | grep ${project_name} | awk '{print $3}'`  if [ "$imageId" != "" ] ; then     docker rmi -f $imageId     echo "Delete Image Success" fi  docker login -u DevOps -p P@ssw0rd $harbor_url  docker pull $imageName  docker run -d -p $port:$port --name $project_name $imageName  echo "Start Container Success" echo $project_name 
  1. 设置文件权限为可执行:
chmod a+x deploy.sh 

在这里插入图片描述
④配置构建后操作
在这里插入图片描述

2.6 Jenkins流水线(pipeline)、自动化脚本

2.6.1 Jenkins流水线任务介绍

之前采用的都是Jenkins的自由风格,每个流程都要通过不同的方式设置,并且构建过程中整体流程时不可见的,无法确认每个流程花费的时间,同时不方便问题的定位。

Jenkins的Pipeline可以让项目的发布整体流程可视化,明确执行的阶段,快速定位问题。让整个项目的生命周期可以通过一个Jenkinsfile文件管理,而且Jenkinsfile文件是可以放在项目中维护。

①构建Jenkins流水线任务

  1. 构建任务
    在这里插入图片描述
  2. 生成Groovy脚本
    在这里插入图片描述
  3. 构建后查看视图
    在这里插入图片描述
    ②Groovy脚本
  • Groovy脚本基本语法
// 所有脚本命令包含在pipeline{}中 pipeline {   	// 指定任务在哪个节点执行(Jenkins支持分布式)     agent any          // 配置全局环境,指定变量名=变量值信息     environment{     	host = '192.168.11.11'     }      // 存放所有任务的合集     stages {     	// 单个任务         stage('任务1') {         	// 实现任务的具体流程             steps {                 echo 'do something'             }         } 		// 单个任务         stage('任务2') {         	// 实现任务的具体流程             steps {                 echo 'do something'             }         }         // ……     } } 

Jenkinsfile方式需要将脚本内容编写到项目中的Jenkinsfile文件中,每次构建会自动拉取并且获取项目中的Jenkinsfile文件来对项目进行构建

  • 配置pipeline
    在这里插入图片描述
  • 准备Jenkinsfile
    在这里插入图片描述
  • 测试效果
    在这里插入图片描述
2.6.2 Jenkins流水线任务实现
  1. 参数化构建

添加参数化构建,方便选择不同的项目版本

在这里插入图片描述
2. 拉取Git代码

通过流水线语法生成Checkout代码的脚本

在这里插入图片描述

将*/master更改为标签${tag}

pipeline {     agent any     stages {          stage('拉取Git代码') {             steps {                 checkout([$class: 'GitSCM', branches: [[name: '${tag}']], extensions: [], userRemoteConfigs: [[url: 'http://49.233.115.171:8929/root/test.git']]])             }         }     } } 
  1. 构建代码

通过脚本执行mvn的构建命令

pipeline {     agent any      stages {          stage('拉取Git代码') {             steps {                 checkout([$class: 'GitSCM', branches: [[name: '${tag}']], extensions: [], userRemoteConfigs: [[url: 'http://49.233.115.171:8929/root/test.git']]])             }         }          stage('构建代码') {             steps {                 sh '/var/jenkins_home/maven/bin/mvn clean package -DskipTests'             }         } } 
  1. 代码质量检测

通过脚本执行sonar-scanner命令即可

pipeline {     agent any      stages {          stage('拉取Git代码') {             steps {                 checkout([$class: 'GitSCM', branches: [[name: '${tag}']], extensions: [], userRemoteConfigs: [[url: 'http://49.233.115.171:8929/root/test.git']]])             }         }          stage('构建代码') {             steps {                 sh '/var/jenkins_home/maven/bin/mvn clean package -DskipTests'             }         }          stage('检测代码质量') {             steps {                 sh '/var/jenkins_home/sonar-scanner/bin/sonar-scanner -Dsonar.sources=./ -Dsonar.projectname=${JOB_NAME} -Dsonar.projectKey=${JOB_NAME} -Dsonar.java.binaries=target/ -Dsonar.login=31388be45653876c1f51ec02f0d478e2d9d0e1fa'              }         }     } }  
  1. 制作自定义镜像并发布
  • 生成自定义镜像脚本
pipeline {     agent any     environment{         harborHost = '192.168.11.11:80'         harborRepo = 'repository'         harborUser = 'DevOps'         harborPasswd = 'P@ssw0rd'     }      // 存放所有任务的合集     stages {          stage('拉取Git代码') {             steps {                 checkout([$class: 'GitSCM', branches: [[name: '${tag}']], extensions: [], userRemoteConfigs: [[url: 'http://49.233.115.171:8929/root/test.git']]])             }         }          stage('构建代码') {             steps {                 sh '/var/jenkins_home/maven/bin/mvn clean package -DskipTests'             }         }          stage('检测代码质量') {             steps {                 sh '/var/jenkins_home/sonar-scanner/bin/sonar-scanner -Dsonar.sources=./ -Dsonar.projectname=${JOB_NAME} -Dsonar.projectKey=${JOB_NAME} -Dsonar.java.binaries=target/ -Dsonar.login=31388be45653876c1f51ec02f0d478e2d9d0e1fa'              }         }          stage('制作自定义镜像并发布Harbor') {             steps {                 sh '''cp ./target/*.jar ./docker/                 cd ./docker                 docker build -t ${JOB_NAME}:${tag} ./'''                  sh '''docker login -u ${harborUser} -p ${harborPasswd} ${harborHost}                 docker tag ${JOB_NAME}:${tag} ${harborHost}/${harborRepo}/${JOB_NAME}:${tag}                 docker push ${harborHost}/${harborRepo}/${JOB_NAME}:${tag}'''             }         }     } } 
  • 生成Publish Over SSH脚本
pipeline {     agent any     environment{         harborHost = '192.168.11.11:80'         harborRepo = 'repository'         harborUser = 'DevOps'         harborPasswd = 'P@ssw0rd'     }      // 存放所有任务的合集     stages {          stage('拉取Git代码') {             steps {                 checkout([$class: 'GitSCM', branches: [[name: '${tag}']], extensions: [], userRemoteConfigs: [[url: 'http://49.233.115.171:8929/root/test.git']]])             }         }          stage('构建代码') {             steps {                 sh '/var/jenkins_home/maven/bin/mvn clean package -DskipTests'             }         }docker          stage('检测代码质量') {             steps {                 sh '/var/jenkins_home/sonar-scanner/bin/sonar-scanner -Dsonar.sources=./ -Dsonar.projectname=${JOB_NAME} -Dsonar.projectKey=${JOB_NAME} -Dsonar.java.binaries=target/ -Dsonar.login=7d66af4b39cfe4f52ac0a915d4c9d5c513207098'              }         }          stage('制作自定义镜像并发布Harbor') {             steps {                 sh '''cp ./target/*.jar ./docker/                 cd ./docker                 docker build -t ${JOB_NAME}:${tag} ./'''                  sh '''docker login -u ${harborUser} -p ${harborPasswd} ${harborHost}                 docker tag ${JOB_NAME}:${tag} ${harborHost}/${harborRepo}/${JOB_NAME}:${tag}                 docker push ${harborHost}/${harborRepo}/${JOB_NAME}:${tag}'''             }         }                  stage('目标服务器拉取镜像并运行') {             steps {                 sshPublisher(publishers: [sshPublisherDesc(configName: 'testEnvironment', transfers: [sshTransfer(cleanRemote: false, excludes: '', execCommand: "/usr/bin/deploy.sh $harborHost $harborRepo $JOB_NAME $tag $port ", execTimeout: 120000, flatten: false, makeEmptyDirs: false, noDefaultExcludes: false, patternSeparator: '[, ]+', remoteDirectory: '', remoteDirectorySDF: false, removePrefix: '', sourceFiles: '')], usePromotionTimestamp: false, useWorkspaceInPromotion: false, verbose: false)])             }         }     } } 

Ps:由于采用变量,记得使用双引号

2.6.3 Jenkins流水线整合钉钉

在程序部署成功之后,可以通过钉钉的机器人及时向开发人员发送部署的最终结果通知

步骤:Jenkins安装插件 - 钉钉创建群组并构建机器人 - Jenkins配置系统添加钉钉通知 - 任务中追加钉钉流水线配置

  1. 安装插件
    在这里插入图片描述
  2. 钉钉内部创建群组并构建机器人
    在这里插入图片描述
    在这里插入图片描述
    最终获取到Webhook信息:

https://oapi.dingtalk.com/robot/send?access_token=kej4ehkj34gjhg34jh5bh5jb34hj53b4

  1. Jenkins系统配置添加钉钉通知
    在这里插入图片描述
  2. 任务线中追加流水线配置
pipeline {     agent any      environment {         sonarLogin = '2bab7bf7d5af25e2c2ca2f178af2c3c55c64d5d8'         harborUser = 'admin'         harborPassword = 'Harbor12345'         harborHost = '192.168.11.12:8888'         harborRepo = 'repository'     }      stages {         stage('拉取Git代码'){             steps {                 checkout([$class: 'GitSCM', branches: [[name: '$tag']], extensions: [], userRemoteConfigs: [[url: 'http://49.233.115.171:8929/root/lsx.git']]])             }         }         stage('Maven构建代码'){             steps {                 sh '/var/jenkins_home/maven/bin/mvn clean package -DskipTests'             }         }         stage('SonarQube检测代码'){             steps {                 sh '/var/jenkins_home/sonar-scanner/bin/sonar-scanner -Dsonar.sources=./ -Dsonar.projectname=${JOB_NAME} -Dsonar.projectKey=${JOB_NAME} -Dsonar.java.binaries=target/ -Dsonar.login=${sonarLogin}'             }         }         stage('制作自定义镜像'){             steps {                 sh '''cd docker                 mv ../target/*.jar ./                 docker build -t ${JOB_NAME}:$tag .                 '''             }         }          stage('推送自定义镜像'){             steps {                 sh '''docker login -u ${harborUser} -p ${harborPassword} ${harborHost}                 docker tag ${JOB_NAME}:$tag ${harborHost}/${harborRepo}/${JOB_NAME}:$tag                 docker push ${harborHost}/${harborRepo}/${JOB_NAME}:$tag'''             }         }          stage('通知目标服务器'){             steps {                 sshPublisher(publishers: [sshPublisherDesc(configName: 'centos-docker', transfers: [sshTransfer(cleanRemote: false, excludes: '', execCommand: "/usr/bin/deploy.sh $harborHost $harborRepo $JOB_NAME $tag $port", execTimeout: 120000, flatten: false, makeEmptyDirs: false, noDefaultExcludes: false, patternSeparator: '[, ]+', remoteDirectory: '', remoteDirectorySDF: false, removePrefix: '', sourceFiles: '')], usePromotionTimestamp: false, useWorkspaceInPromotion: false, verbose: false)])             }           }     }     post {         success {             dingtalk (                 robot: 'Jenkins-DingDing',                 type:'MARKDOWN',                 title: "success: ${JOB_NAME}",                 text: ["- 成功构建:${JOB_NAME}项目!\n- 版本:${tag}\n- 持续时间:${currentBuild.durationString}\n- 任务:#${JOB_NAME}"]             )         }         failure {             dingtalk (                 robot: 'Jenkins-DingDing',                 type:'MARKDOWN',                 title: "fail: ${JOB_NAME}",                 text: ["- 失败构建:${JOB_NAME}项目!\n- 版本:${tag}\n- 持续时间:${currentBuild.durationString}\n- 任务:#${JOB_NAME}"]             )         }     } } 
  1. 查看效果
    在这里插入图片描述

2.7 Kubernetes

2.7.1 介绍及安装

Kubernetes又称为k8s,是一个开源的,用于管理云平台中多个主机上的容器。目的是让容器化部署更加简单、高效。

①k8s主要作用:
  1. 服务发现和负载均衡(DNS名称或自己IP地址公开容器)
  2. 存储编排(类似Docker的数据卷)
  3. 自动部署和回滚(可以按照你的需求调整容器状态)
  4. 自动完成装箱计算(允许你设置每个容器的资源,CPU、内存等)
  5. 自我修复(可以重启失败的容器、替换容器、检查容器状况等)
  6. 密钥与配置管理(允许存储和管理敏感信息,可以在不重建容器的情况下完成部署和更新密钥)
②k8s的架构

k8s搭建至少需要两个节点,一个Master负责管理,一个Slave搭建在工作服务器上负责分配

在这里插入图片描述

各个组件的基本功能

  • API Server:k8s通讯的核心组件,负责k8s内部交互及接收发送指令的组件
  • controller-manage:资源调度,根据集群情况分配资源
  • etcd:key-value数据库,存储集群的状态信息
  • scheduler:负责调度每个工作节点
  • cloud-controller-manage:负责调度其他云服务产品
  • kubelet:管理Pods上面的容器
  • kube-proxy:负责处理其他Slave或客户端的请求
  • Pod:运行的容器
③k8s安装

本文采用https://kuboard.cn/提供的方式安装K8s,安装单Master节点

  • 要求:至少使用Centos7.8版本
  • 至少2台2核4G服务器

在这里插入图片描述
准备好服务器之后开始安装:

1. 重新设置hostname,不允许为localhost
# 修改 hostname,名字不允许使用下划线、小数点、大写字母,不能叫master hostnamectl set-hostname your-new-host-name # 查看修改结果 hostnamectl status # 设置 hostname 解析 echo "127.0.0.1   $(hostname)" >> /etc/hosts 

要求2台服务器之间可以相互通讯

2. 安装kuboard软件
# 阿里云 docker hub 镜像 export REGISTRY_MIRROR=https://registry.cn-hangzhou.aliyuncs.com curl -sSL https://kuboard.cn/install-script/v1.19.x/install_kubelet.sh | sh -s 1.19.5 
3. 初始化Master节点

关于初始化时用到的环境变量

  • APISERVER_NAME 不能是 master 的 hostname

  • APISERVER_NAME 必须全为小写字母、数字、小数点,不能包含减号

  • POD_SUBNET 所使用的网段不能与 master节点/worker节点 所在的网段重叠。该字段的取值为一个 CIDR 值,如果您对 CIDR 这个概念还不熟悉,请仍然执行 export POD_SUBNET=10.100.0.0/16 命令,不做修改

  • 设置ip,域名,网段并执行初始化操作

# 只在 master 节点执行 # 替换 x.x.x.x 为 master 节点实际 IP(请使用内网 IP) # export 命令只在当前 shell 会话中有效,开启新的 shell 窗口后,如果要继续安装过程,请重新执行此处的 export 命令 export MASTER_IP=192.168.11.32 # 替换 apiserver.demo 为 您想要的 dnsName export APISERVER_NAME=apiserver.demo # Kubernetes 容器组所在的网段,该网段安装完成后,由 kubernetes 创建,事先并不存在于您的物理网络中 export POD_SUBNET=10.100.0.1/16 echo "${MASTER_IP}    ${APISERVER_NAME}" >> /etc/hosts curl -sSL https://kuboard.cn/install-script/v1.19.x/init_master.sh | sh -s 1.19.5 
  • 检查Master启动状态
# 只在 master 节点执行  # 执行如下命令,等待 3-10 分钟,直到所有的容器组处于 Running 状态 watch kubectl get pod -n kube-system -o wide  # 查看 master 节点初始化结果 kubectl get nodes -o wide 

Ps:如果出现NotReady的情况执行(最新版本的BUG,1.19一般没有)

docker pull quay.io/coreos/flannel:v0.10.0-amd64  mkdir -p /etc/cni/net.d/ cat <<EOF> /etc/cni/net.d/10-flannel.conf {"name":"cbr0","type":"flannel","delegate": {"isDefaultGateway": true}} EOF mkdir /usr/share/oci-umount/oci-umount.d -p mkdir /run/flannel/ cat <<EOF> /run/flannel/subnet.env FLANNEL_NETWORK=172.100.0.0/16 FLANNEL_SUBNET=172.100.1.0/24 FLANNEL_MTU=1450 FLANNEL_IPMASQ=true EOF kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/v0.9.1/Documentation/kube-flannel.yml 
  • 安装网络服务插件
export POD_SUBNET=10.100.0.0/16 kubectl apply -f https://kuboard.cn/install-script/v1.22.x/calico-operator.yaml wget https://kuboard.cn/install-script/v1.22.x/calico-custom-resources.yaml sed -i "s#192.168.0.0/16#${POD_SUBNET}#" calico-custom-resources.yaml kubectl apply -f calico-custom-resources.yaml 
4. 初始化worker节点
  • 获取join命令参数,在Master节点执行
# 只在 master 节点执行 kubeadm token create --print-join-command 

在这里插入图片描述

  • 在worker节点初始化
# 只在 worker 节点执行 # 替换 x.x.x.x 为 master 节点的内网 IP export MASTER_IP=192.168.11.32 # 替换 apiserver.demo 为初始化 master 节点时所使用的 APISERVER_NAME export APISERVER_NAME=apiserver.demo echo "${MASTER_IP}    ${APISERVER_NAME}" >> /etc/hosts  # 替换为 master 节点上 kubeadm token create 命令的输出 kubeadm join apiserver.demo:6443 --token vwfilu.3nhndohc5gn1jv9k     --discovery-token-ca-cert-hash sha256:22ff15cabfe87ab48a7db39b3bbf986fee92ec92eb8efc7fe9b0abe2175ff0c2 
5. 检查最终运行结果
  • 在Master节点运行
# 只在 master 节点执行 kubectl get nodes -o wide 

Ps:如果出现NotReady的情况执行(最新版本的BUG,1.19一般没有)

docker pull quay.io/coreos/flannel:v0.10.0-amd64  mkdir -p /etc/cni/net.d/ cat <<EOF> /etc/cni/net.d/10-flannel.conf {"name":"cbr0","type":"flannel","delegate": {"isDefaultGateway": true}} EOF mkdir /usr/share/oci-umount/oci-umount.d -p mkdir /run/flannel/ cat <<EOF> /run/flannel/subnet.env FLANNEL_NETWORK=172.100.0.0/16 FLANNEL_SUBNET=172.100.1.0/24 FLANNEL_MTU=1450 FLANNEL_IPMASQ=true EOF kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/v0.9.1/Documentation/kube-flannel.yml 
  • 获取节点信息
kubectl get nodes 

在这里插入图片描述

6. 安装Kuboard管理k8s集群
  • 安装Kuboard
kubectl apply -f https://addons.kuboard.cn/kuboard/kuboard-v3.yaml # 您也可以使用下面的指令,唯一的区别是,该指令使用华为云的镜像仓库替代 docker hub 分发 Kuboard 所需要的镜像 # kubectl apply -f https://addons.kuboard.cn/kuboard/kuboard-v3-swr.yaml 
  • 查看启动情况
watch kubectl get pods -n kuboard 

在这里插入图片描述

  • 在浏览器中打开链接 http://your-node-ip-address:30080
  • 输入初始用户名和密码,并登录
    • 用户名: admin
    • 密码: Kuboard123

在这里插入图片描述

2.7.2 k8s操作

首先k8s在运行我们的资源时,关联到了哪些内容呢?

  • 资源的构建方式:
    • 采用kubectl的命令方式
    • yaml文件方式
①namespace

命名空间:对k8s中运行的资源进行隔离,但是网络是互通的。类似于docker的容器,可以将多个资源配置到一个namespace中。而namespace可以对不同环境进行资源隔离,默认情况下k8s提供了default命名空间。

命令方式:

# 查看现有的全部命名空间 kubectl get ns  # 构建命名空间 kubectl create ns 命名空间名称  # 删除现有命名空间, 并且会删除空间下的全部资源 kubectl delete ns 命名空间名称 

yaml文件方式(构建源时,设置命名空间)

apiVersion: v1 kind: Namespace metadata:   name: test 
②Pod

k8s中运行的一组容器,Pod是k8s的最小单位。但是对于Docker而言,Pod中会运行多个Docker容器

  • 命令方式
# 查看所有运行的pod kubectl get pods -A  # 查看指定Namespace下的Pod kubectl get pod [-n 命名空间]  #(默认default)  # 创建Pod kubectl run pod名称 --image=镜像名称  # 查看Pod详细信息 kubectl describe pod pod名称  # 删除pod kubectl delete pod pod名称 [-n 命名空间]  #(默认default)  # 查看pod输出的日志 kubectl logs -f pod名称  # 进去pod容器内部 kubectl exec -it pod名称 -- bash  # 查看kubernetes给Pod分配的ip信息,并且通过ip和容器的端口,可以直接访问 kubectl get pod -owide 
  • yaml方式(推荐)
apiVersion: v1 kind: Pod metadata:   labels:     run: 运行的pod名称   name: pod名称   namespace: 命名空间 spec:   containers:   - image: 镜像名称     name: 容器名称  # 启动Pod:kubectl apply -f yaml文件名称 # 删除Pod:kubectl delete -f yaml文件名称 
  • Pod中运行多个容器
apiVersion: v1 kind: Pod metadata:   labels:     run: 运行的pod名称   name: pod名称   namespace: 命名空间 spec:   containers:   - image: 镜像名称     name: 容器名称   - image: 镜像名称     name: 容器名称 …………     

Kuboard效果:
在这里插入图片描述

③Deployment

部署时,可以通过Deployment管理和编排Pod

  • 命令方式
# 基于Deployment启动容器 kubectl create deployment deployment名称 --image=镜像名称 # 用deployment启动的容器会在被删除后自动再次创建,达到故障漂移的效果 # 需要使用deploy的方式删除deploy # 查看现在的deployment kubectl get deployment  # 删除deployment kubectl delete deployment deployment名称  # 基于Deployment启动容器并设置Pod集群数 kubectl create deployment deployment名称 --image=镜像名称 --replicas 集群个数 
  • 配置文件方式
apiVersion: apps/v1 kind: Deployment metadata:   name: nginx-deployment   labels:     app: nginx spec:   replicas: 3   selector:     matchLabels:       app: nginx   template:     metadata:       labels:         app: nginx     spec:       containers:       - name: nginx        image: nginx        ports:        - containerPort: 80 

正常使用kubectl运行yaml即可

弹性伸缩功能:

# 基于scale实现弹性伸缩 kubectl scale deploy/Deployment名称 --replicas 集群个数 # 或者修改yaml文件 kubectl edit deploy Deployment名称 

在这里插入图片描述
灰度发布:
Deploy可以在部署新版本数据时,成功启动一个Pod,才会下线一个老版本Pod

kubectl set image deployment/Deployment名称 容器名=镜像:版本 
④service

可以将多个Pod整合为一个Service,让客户端通过这一个Service访问到这一组Pod,并且可以实现负载均衡

  • ClusterIP方式:

ClusterIP是集群内部Pod之间的访问方式

命令实现效果

# 通过生成service映射一个Deployment下的所有pod中的某一个端口的容器 kubectl expose deployment Deployment名称 --port=Service端口号 --target-port=Pod内容器端口 

之后通过kubectl get service查看Service提供的ip,即可访问
在这里插入图片描述
也可以通过Deployment名称.namespace名称.svc作为域名访问
在这里插入图片描述

  • NodePort方式

ClusterIP方式只能在Pod内部实现访问,但是一般需要对外暴露网关,所以需要NodePort的方式将Pod对外暴露访问

命令实现方式:

# 通过生成service映射一个Deployment下的所有pod中的某一个端口的容器 kubectl expose deployment Deployment名称 --port=Service端口号 --target-port=Pod内容器端口 --type=NodePort 

在这里插入图片描述
Service通过yaml方式实现:

apiVersion: v1 kind: Service metadata:   labels     app: nginx   name: nginx   spec:     selector:       app: nginx     ports:     - port: 8888      protocol: TCP      targetPort: 80 

通过apply启动就可以创建Service

测试:通过Deployment部署,通过Service部署

apiVersion: apps/v1 kind: Deployment metadata:   name: nginx-deployment   labels:     app: nginx-deployment spec:   replicas: 2   selector:     matchLabels:       app: nginx-deployment   template:     metadata:       labels:         app: nginx-deployment     spec:       containers:       - name: nginx-deployment         image: nginx         ports:         - containerPort: 80 --- apiVersion: v1 kind: Service metadata:   labels:     app: nginx-service   name: nginx-service spec:   selector:     app: nginx-deployment   ports:   - port: 8888     protocol: TCP     targetPort: 80   type: NodePort 

可以查看到暴露信息:
在这里插入图片描述

⑤Ingress(入口)

k8s推荐将Ingress作为所有Service的入口,提供统一的入口,避免多个服务之间需要记录大量的IP或域名(IP可能变化,域名太多记录不方便)

  • Ingress底层就是一个Nginx,可以直接在kuboard上点击安装

在这里插入图片描述
在这里插入图片描述

因为副本数默认为1,但是k8s整体集群就2个节点,所以显示下面即为安装成功

在这里插入图片描述

可以将Ingress接收到的请求转发到不同的Service中

推荐使用yaml文件方式

apiVersion: networking.k8s.io/v1 kind: Ingress metadata:   name: nginx-ingress spec:   ingressClassName: ingress   rules:   - host: nginx.mashibing.com     http:       paths:       - path: /         pathType: Prefix         backend:           service:             name: nginx-service             port:               number: 8888 

在这里插入图片描述
Kuboard安装的Ingress有admission的校验配置,需要先删除配置再启动

找到指定的ingress的校验信息,删除即可

在这里插入图片描述

# 查看校验webhook的配置 kubectl get -A ValidatingWebhookConfiguration  # 删除指定的校验 kubectl delete ValidatingWebhookConfiguration ingress-nginx-admission-my-ingress-controller 

配置本地hosts文件:
在这里插入图片描述
下面就可以访问在Service中暴露的Nginx信息:
在这里插入图片描述

2.8 Jenkins集成K8s

2.8.1 准备部署的yaml文件
apiVersion: apps/v1 kind: Deployment metadata:   namespace: test   name: pipeline   labels:     app: pipeline spec:   replicas: 2   selector:     matchLabels:       app: pipeline   template:     metadata:       labels:         app: pipeline         spec:       containers:       - name: pipeline         image: 192.168.11.102:80/repo/pipeline:v4.0.0         imagePullPolicy: Always         ports:         - containerPort: 8080 --- apiVersion: v1 kind: Service metadata:   namespace: test   labels:     app: pipeline   name: pipeline   spec:   selector:     app: pipeline   ports:   - port: 8081     targetPort: 8080   type: NodePort --- apiVersion: networking.k8s.io/v1 kind: Ingress metadata:   namespace: test   name: pipeline spec:   ingressClassName: ingress   rules:   - host: mashibing.pipeline.com     http:       paths:       - path: /         pathType: Prefix         backend:           service:             name: pipeline             port:               number: 8081 
2.8.2 Harbor私服配置

在尝试用kubernetes的yml文件启动pipeline服务时,会出现Kubernetes无法拉取镜像的问题,这里需要在kubernetes所在的Linux中配置Harbor服务信息,并且保证Kubernetes可以拉取Harbor上的镜像

  1. 设置Master和Worker的私服地址信息
    在这里插入图片描述
  2. 在Kuboard上设置私服密文信息
    在这里插入图片描述

将上图复制好的指定执行,测试结果如下:

在这里插入图片描述

2.8.3 测试使用效果

执行kubectl命令,基于yml启动服务,并且基于部署后服务的提示信息以及Ingress的设置,直接访问

在这里插入图片描述

2.8.4 Jenkins远程调用
  1. 将pipeline.yml配置到GitLab中
    在这里插入图片描述
  2. 配置Jenkins目标服务器,可以将yml文件传输到k8s的Master上

在这里插入图片描述

  1. 修改Jenkinsfile,重新设置流水线任务脚本,并测试效果
    在这里插入图片描述
    在这里插入图片描述
  2. 设置Jenkins无密码登录k8s-master

将Jenkins中公钥信息复制到k8s-master的~/.ssh/authorized_keysz中,保证远程连接无密码

在这里插入图片描述
5. 设置执行kubectl的脚本到Jenkinsfile
在这里插入图片描述
查看效果:
在这里插入图片描述

可以查看到yml文件是由变化的, 这样k8s就会重新加载

在这里插入图片描述
Ps:这种方式更适应与CD操作,将项目将基于某个版本部署到指定的目标服务器

2.9 基于GitLab的WebHooks

实现一个自动化的CI(开发人员push代码到Git仓库之后,Jenkins会自动构建项目,将最新的提交点代码构建并进行打包部署)。这里区别于上面的CD,CD需要基于某个版本进行部署,而这里每次都是将最新的提交点集成到主干上并测试。

2.9.1 WebHooks通知
  1. 开启Jenkins自动构建
    在这里插入图片描述

  2. 设置GitLab的Webhooks
    在这里插入图片描述

  3. 关闭Jenkins的GitLab认证
    在这里插入图片描述

  4. 再次测试
    在这里插入图片描述

拓展:实现滚动更新

因为pipeline没有改变时,每次不会重新加载,这样会导致Pod中的容器不会动态更新,这里需要使用kubectl的rollout restart命令滚动更新

在这里插入图片描述

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!