每日Attention学习10——Scale-Aware Modulation

avatar
作者
筋斗云
阅读量:3
模块出处

[ICCV 23] [link][code] Scale-Aware Modulation Meet Transformer


模块名称

Scale-Aware Modulation (SAM)


模块作用

改进的自注意力


模块结构

在这里插入图片描述


模块代码
import torch import torch.nn as nn import torch.nn.functional as F  class SAM(nn.Module):     def __init__(self, dim, ca_num_heads=4, sa_num_heads=8, qkv_bias=False, qk_scale=None,                        attn_drop=0., proj_drop=0., expand_ratio=2):         super().__init__()         self.ca_attention = 1         self.dim = dim         self.ca_num_heads = ca_num_heads         self.sa_num_heads = sa_num_heads         assert dim % ca_num_heads == 0, f"dim {dim} should be divided by num_heads {ca_num_heads}."         assert dim % sa_num_heads == 0, f"dim {dim} should be divided by num_heads {sa_num_heads}."         self.act = nn.GELU()         self.proj = nn.Linear(dim, dim)         self.proj_drop = nn.Dropout(proj_drop)         self.split_groups=self.dim//ca_num_heads         self.v = nn.Linear(dim, dim, bias=qkv_bias)         self.s = nn.Linear(dim, dim, bias=qkv_bias)         for i in range(self.ca_num_heads):             local_conv = nn.Conv2d(dim//self.ca_num_heads, dim//self.ca_num_heads, kernel_size=(3+i*2), padding=(1+i), stride=1, groups=dim//self.ca_num_heads)             setattr(self, f"local_conv_{i + 1}", local_conv)         self.proj0 = nn.Conv2d(dim, dim*expand_ratio, kernel_size=1, padding=0, stride=1, groups=self.split_groups)         self.bn = nn.BatchNorm2d(dim*expand_ratio)         self.proj1 = nn.Conv2d(dim*expand_ratio, dim, kernel_size=1, padding=0, stride=1)      def forward(self, x, H, W):         # In         B, N, C = x.shape         v = self.v(x)         s = self.s(x).reshape(B, H, W, self.ca_num_heads, C//self.ca_num_heads).permute(3, 0, 4, 1, 2)          # Multi-Head Mixed Convolution         for i in range(self.ca_num_heads):             local_conv = getattr(self, f"local_conv_{i + 1}")             s_i= s[i]             s_i = local_conv(s_i).reshape(B, self.split_groups, -1, H, W)             if i == 0:                 s_out = s_i             else:                 s_out = torch.cat([s_out,s_i],2)         s_out = s_out.reshape(B, C, H, W)          # Scale-Aware Aggregation (SAA)         s_out = self.proj1(self.act(self.bn(self.proj0(s_out))))         self.modulator = s_out         s_out = s_out.reshape(B, C, N).permute(0, 2, 1)         x = s_out * v          # Out         x = self.proj(x)         x = self.proj_drop(x)         return x  if __name__ == '__main__':     x = torch.randn([3, 1024, 256])  # B, N, C     sam = SAM(dim=256)     out = sam(x, H=32, W=32)  # H=N*W     print(out.shape)  # 3, 1024, 256 

原文表述

我们提出了一种新颖的卷积调制,称为尺度感知调制 (SAM),它包含两个新模块:多头混合卷积 (MHMC) 和尺度感知聚合 (SAA)。MHMC 模块旨在增强感受野并同时捕获多尺度特征。SAA 模块旨在有效地聚合不同头部之间的特征,同时保持轻量级架构。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!