深层神经网络示例

avatar
作者
筋斗云
阅读量:1

在这里插入图片描述
维度说明:

A[L]、Z[L]:(本层神经元个数、样本数)
W[L]:(本层神经元个数、上层神经元个数)
b[L]:(本层神经元个数、1)

dZ[L]:dA[L] * g’A(Z[L])
dZ[L]:(本层神经元个数、样本数)
dw = dL/dz * dz/dw = dz*x(链式法则)
db = dz(链式法则)
dW[L]:(本层神经元个数、上层神经元个数)
dA[L]:(本层神经元个数、样本数)
da = dz * w
dA[L-1] = W[L].T dZ[L],注意这里没有除以神经元个数,得到平均da。比如结果的第一个元素是多个dw1 * dz + dw1 * dz+ …dw1 * dz(神经元个数)的累加和

输出层采用sigmoid,隐藏层采用tanh

import numpy as np # 设置一些画图相关的参数 import matplotlib.pyplot as plt  plt.rcParams['figure.figsize'] = (5.0, 4.0) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' from project_03.utils.dnn_utils import * from project_03.utils.testCases import *   def load_dataset():     train_dataset = h5py.File('../deep_learn_01/project_01/datasets/train_catvnoncat.h5', 'r')     train_set_x_orig = np.array(train_dataset['train_set_x'][:])     train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # 加载训练数据      test_dataset = h5py.File('../deep_learn_01/project_01/datasets/test_catvnoncat.h5', "r")  # 加载测试数据     test_set_x_orig = np.array(test_dataset["test_set_x"][:])     test_set_y_orig = np.array(test_dataset["test_set_y"][:])      classes = np.array(test_dataset["list_classes"][:])  # 加载标签类别数据,这里的类别只有两种,1代表有猫,0代表无猫      train_set_y_orig = train_set_y_orig.reshape(         (1, train_set_y_orig.shape[0]))  # 把数组的维度从(209,)变成(1, 209),这样好方便后面进行计算[1 1 0 1] -> [[1][1][0][1]]     test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))  # 从(50,)变成(1, 50)     return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes   def sigmoid(Z):     A = 1 / (1 + np.exp(-Z))     return A   def relu(Z):     A = np.maximum(0, Z)     assert (A.shape == Z.shape)     return A   def initialize_parameters_deep(layers_dims):     """     :param layers_dims: list of neuron num     example: layer_dims=[5,4,3],表示输入层有5个神经元,第一层有4个,最后二层有3个神经元(还有输出层的1个神经元)     :return: parameters: the w,b of each layer     """     np.random.seed(1)     parameters = {}     L = len(layers_dims)     for l in range(1, L):         parameters[f"W{l}"] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])         parameters[f"b{l}"] = np.zeros((layers_dims[l], 1))         assert (parameters[f"W{l}"].shape == (layers_dims[l], layers_dims[l - 1]))         assert (parameters[f"b{l}"].shape == (layers_dims[l], 1))     return parameters  # W1,b1,W2,b2   def linear_forward(A, W, b):     """     线性前向传播     """     Z = np.dot(W, A) + b     assert (Z.shape == (W.shape[0], A.shape[1]))     return Z   def linear_activation_forward(A_prev, W, b, activation):     """     :param A_prev: 上一层得到的A,输入到本层来计算本层的Z和A,第一层时A_prev就是输入X     :param W:本层的w     :param b:本层的b     :param activation: 激活函数     """     Z = linear_forward(A_prev, W, b)     if activation == "sigmoid":         A = sigmoid(Z)     elif activation == "relu":         A = relu(Z)     else:         assert (1 != 1), "there is no support activation!"     assert (A.shape == (W.shape[0], A_prev.shape[1]))     linear_cache = (A_prev, W, b)     cache = (linear_cache, Z)     return A, cache   def L_model_forward(X, parameters):     """     前向传播     :param X: 输入特征     :param parameters: 每一层的初始化w,b     """     caches = []     A = X     L = len(parameters) // 2  # W1,b1,W2,b2, L=2     for l in range(1, L):         A_prev = A         A, cache = linear_activation_forward(A_prev, parameters[f"W{l}"], parameters[f"b{l}"], 'relu')         caches.append(cache)  # A1,(X,W1,b1,Z1)     AL, cache = linear_activation_forward(A, parameters[f"W{L}"], parameters[f"b{L}"], activation="sigmoid")     caches.append(cache)  # A2,(A1,W2,b2,Z2)     assert (AL.shape == (1, X.shape[1]))     return AL, caches   def compute_cost(AL, Y):     m = Y.shape[1]     logprobs = np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL))     cost = (-1 / m) * np.sum(logprobs)     assert (cost.shape == ())     return cost   def linear_backward(dZ, cache):     """     :param dZ: 后面一层的dZ     :param cache: 前向传播保存下来的本层的变量     :return 本层的dw、db,前一层da     """     A_prew, W, b = cache     m = A_prew.shape[1]      dW = np.dot(dZ, A_prew.T) / m     db = np.sum(dZ, axis=1, keepdims=True) / m     dA_prev = np.dot(W.T, dZ)      assert (dA_prev.shape == A_prew.shape)     assert (dW.shape == W.shape)     assert (db.shape == b.shape)     return dA_prev, dW, db   def linear_activation_backward(dA, cache, activation):     """     :param dA: 本层的dA     :param cache: 前向传播保存的本层的变量     :param activation: 激活函数:"sigmoid"或"relu"     :return 本层的dw、db,前一次的dA     """     linear_cache, Z = cache     # 首先计算本层的dZ     if activation == 'relu':         dZ = 1 * dA         dZ[Z <= 0] = 0     elif activation == 'sigmoid':         A = sigmoid(Z)         dZ = dA * A * (1 - A)     else:         assert (1 != 1), "there is no support activation!"     assert (dZ.shape == Z.shape)     # 这里我们又顺带根据本层的dZ算出本层的dW和db以及前一层的dA     dA_prev, dW, db = linear_backward(dZ, linear_cache)     return dA_prev, dW, db   def L_model_backward(AL, Y, caches):     """     :param AL: 最后一层A     :param Y: 真实标签     :param caches: 前向传播的保存的每一层的相关变量  (A_prev, W, b),Z     """     grads = {}     L = len(caches)  # 2     Y = Y.reshape(AL.shape)  # 让真实标签与预测标签的维度一致      dAL = -np.divide(Y, AL) + np.divide(1 - Y, 1 - AL)  # dA2     # 计算最后一层的dW和db,由成本函数来计算     current_cache = caches[-1]  # 1,2     grads[f"dA{L - 1}"], grads[f"dW{L}"], grads[f"db{L}"] = linear_activation_backward(dAL, current_cache,                                                                                        "sigmoid")  # dA1, dW2, db2     # 计算前L-1层的dw和db,因为最后一层用的是sigmoid,     for c in reversed(range(1, L)):  # reversed(range(1,L))的结果是L-1,L-2...1。是不包括L的。第0层是输入层,不必计算。 caches[0,1] L = 2  1,1         # c表示当前层         grads[f"dA{c - 1}"], grads[f"dW{c}"], grads[f"db{c}"] = linear_activation_backward(grads[f"dA{c}"],                                                                                            caches[c - 1],                                                                                            "relu")     return grads   def update_parameters(parameters, grads, learning_rate):     L = len(parameters) // 2     for l in range(1, L + 1):         parameters[f"W{l}"] = parameters[f"W{l}"] - grads[f"dW{l}"] * learning_rate         parameters[f"b{l}"] = parameters[f"b{l}"] - grads[f"db{l}"] * learning_rate     return parameters   def dnn_model(X, Y, layers_dim, learning_rate=0.0075, num_iterations=3000, print_cost=False):     np.random.seed(1)     costs = []     parameters = initialize_parameters_deep(layers_dim)     for i in range(0, num_iterations):         AL, caches = L_model_forward(X, parameters)         cost = compute_cost(AL, Y)         grads = L_model_backward(AL, Y, caches)         parameters = update_parameters(parameters, grads, learning_rate)         if print_cost and i % 100 == 0:             print("训练%i次后成本是: %f" % (i, cost))         costs.append(cost)     # 画出成本曲线图     plt.plot(np.squeeze(costs))     plt.ylabel('cost')     plt.xlabel('iterations (per tens)')     plt.title("Learning rate =" + str(learning_rate))     plt.show()     return parameters   def predict(X, parameters):     m = X.shape[1]     n = len(parameters) // 2     p = np.zeros((1, m))     probas, caches = L_model_forward(X, parameters)     # 将预测结果转化成0和1的形式,即大于0.5的就是1,否则就是0     for i in range(0, probas.shape[1]):         if probas[0, i] > 0.5:             p[0, i] = 1         else:             p[0, i] = 0      return p   if __name__ == "__main__":     train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()     # 我们要清楚变量的维度,否则后面会出很多问题。下面我把他们的维度打印出来。      train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T     test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T     print("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))     print("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))      train_set_x = train_set_x_flatten / 255     test_set_x = test_set_x_flatten / 255      layers_dims = [12288, 20, 7, 5, 1]     # 根据上面的层次信息来构建一个深度神经网络,并且用之前加载的数据集来训练这个神经网络,得出训练后的参数     parameters = dnn_model(train_set_x, train_set_y, layers_dims, num_iterations=2000, print_cost=True)     # 对训练数据集进行预测     pred_train = predict(train_set_x, parameters)     print("预测准确率是: " + str(np.sum((pred_train == train_set_y) / train_set_x.shape[1])))      # 对测试数据集进行预测     pred_test = predict(test_set_x, parameters)     print("预测准确率是: " + str(np.sum((pred_test == test_set_y) / test_set_x.shape[1]))) 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!