Apache Flink 入门

avatar
作者
筋斗云
阅读量:1

零、概述

Apache Flink 是一个高性能的开源分布式流处理框架,专注于实时数据流的处理。

它设计用于处理无界和有界数据流,在内存级速度下提供高效的有状态计算。

Flink 凭借其独特的Checkpoint机制和Exactly-Once语义,确保数据处理的准确性和一致性,同时支持高吞吐量和低延迟。

通过灵活的窗口操作和丰富的状态管理功能,Flink 能够应对复杂的实时数据处理需求,是大数据处理领域的重要技术之一。

其强大的DataStream API和Table API为开发者提供了高效、简洁的数据处理手段。

一、添加依赖 pom.xml

<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0"          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"          xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">     <modelVersion>4.0.0</modelVersion>      <groupId>com.xch</groupId>     <artifactId>java-flink</artifactId>     <version>1.0-SNAPSHOT</version>      <properties>         <encoding>UTF-8</encoding>         <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>         <maven.compiler.source>1.8</maven.compiler.source>         <maven.compiler.target>1.8</maven.compiler.target>         <java.version>1.8</java.version>         <flink.version>1.12.2</flink.version>     </properties>     <dependencies>         <dependency>             <groupId>org.apache.flink</groupId>             <artifactId>flink-clients_2.12</artifactId>             <version>${flink.version}</version>         </dependency>         <dependency>             <groupId>org.apache.flink</groupId>             <artifactId>flink-java</artifactId>             <version>${flink.version}</version>         </dependency>         <dependency>             <groupId>org.apache.flink</groupId>             <artifactId>flink-streaming-java_2.12</artifactId>             <version>${flink.version}</version>         </dependency>         <dependency>             <groupId>org.apache.flink</groupId>             <artifactId>flink-table-api-java-bridge_2.12</artifactId>             <version>${flink.version}</version>         </dependency>     </dependencies>  </project> 

二、map()filter()flatMap()方法示例

2.1 map()方法示例

简单处理,和java8的stream的map()类似,不过只能进行简单的处理,返回:数组元素自身的和

public static List<Integer> mapDemo(DataSource<Integer> dataSteam) throws Exception {     return dataSteam.map(x -> x + x).collect(); } 

2.2 filter()方法示例

过滤方法,返回偶数,

public static List<Integer> filterDemo(DataSource<Integer> dataSteam) throws Exception {     return dataSteam.filter(x -> x % 2 == 0).collect(); } 

2.3 flatMap()方法示例

flatMap方法可以处理复杂、定制化的逻辑,返回元素的类型也可以是复杂的;

  • 第一个简单处理的示例
public static List<Object> flatMapDemo(DataSource<Integer> dataSteam) throws Exception {     return dataSteam.flatMap(new FlatMapFunction<Integer, Object>() {         @Override         public void flatMap(Integer integer, Collector<Object> collector) throws Exception {             collector.collect(integer);             collector.collect(integer * integer);         }     }).collect(); } 
  • 第二个复杂的示例
public static List<Map<Integer, Object>> flatMapDemo1(DataSource<Integer> dataSteam) throws Exception {     return dataSteam.flatMap(new FlatMapFunction<Integer, Map<Integer, Object>>() {         @Override         public void flatMap(Integer integer, Collector<Map<Integer, Object>> collector) throws Exception{             Map<Integer, Object> hashMap = new HashMap<>();             hashMap.put(integer, integer * integer);             collector.collect(hashMap);         }     }).collect(); } 

2.4 示例演示

import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.ExecutionEnvironment; import org.apache.flink.api.java.operators.DataSource; import org.apache.flink.util.Collector;  import java.util.HashMap; import java.util.List; import java.util.Map;  public class FlinkDemo {      public static void main(String[] args) throws Exception {         ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();         DataSource<Integer> dataSteam = env.fromElements(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);         System.out.println("mapDemo:" + mapDemo(dataSteam));         System.out.println("filterDemo:" + filterDemo(dataSteam));         System.out.println("flatMapDemo:" + flatMapDemo(dataSteam));         System.out.println("flatMapDemo1:" + flatMapDemo1(dataSteam));     } } 

输出内容:

在这里插入图片描述

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!