U-Net网络模型改进(添加通道与空间注意力机制)---亲测有效,指标提升

avatar
作者
猴君
阅读量:2

U-Net网络模型(注意力改进版本)
这一段时间做项目用到了U-Net网络模型,但是原始的U-Net网络还有很大的改良空间,在卷积下采样的过程中加入了通道注意力和空间注意力 。

常规的U-net模型如下图:
在这里插入图片描述
红色箭头为可以添加的地方:即下采样之间。
在这里插入图片描述

通道空间注意力是一个即插即用的注意力模块(如下图):
在这里插入图片描述
代码加入之后对于分割效果是有提升的:(代码如下)

CBAM代码:

class ChannelAttentionModule(nn.Module):     def __init__(self, channel, ratio=16):         super(ChannelAttentionModule, self).__init__()         self.avg_pool = nn.AdaptiveAvgPool2d(1)         self.max_pool = nn.AdaptiveMaxPool2d(1)          self.shared_MLP = nn.Sequential(             nn.Conv2d(channel, channel // ratio, 1, bias=False),             nn.ReLU(),             nn.Conv2d(channel // ratio, channel, 1, bias=False)         )         self.sigmoid = nn.Sigmoid()      def forward(self, x):         avgout = self.shared_MLP(self.avg_pool(x))         maxout = self.shared_MLP(self.max_pool(x))         return self.sigmoid(avgout + maxout)  class SpatialAttentionModule(nn.Module):     def __init__(self):         super(SpatialAttentionModule, self).__init__()         self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)         self.sigmoid = nn.Sigmoid()      def forward(self, x):         avgout = torch.mean(x, dim=1, keepdim=True)         maxout, _ = torch.max(x, dim=1, keepdim=True)         out = torch.cat([avgout, maxout], dim=1)         out = self.sigmoid(self.conv2d(out))         return out  class CBAM(nn.Module):     def __init__(self, channel):         super(CBAM, self).__init__()         self.channel_attention = ChannelAttentionModule(channel)         self.spatial_attention = SpatialAttentionModule()      def forward(self, x):         out = self.channel_attention(x) * x         out = self.spatial_attention(out) * out         return out 

网络模型结合之后代码:

class conv_block(nn.Module):     def __init__(self,ch_in,ch_out):         super(conv_block,self).__init__()         self.conv = nn.Sequential(             nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True),             nn.BatchNorm2d(ch_out),             nn.ReLU(inplace=True),             nn.Conv2d(ch_out, ch_out, kernel_size=3,stride=1,padding=1,bias=True),             nn.BatchNorm2d(ch_out),             nn.ReLU(inplace=True)         )      def forward(self,x):         x = self.conv(x)         return x  class up_conv(nn.Module):     def __init__(self,ch_in,ch_out):         super(up_conv,self).__init__()         self.up = nn.Sequential(             nn.Upsample(scale_factor=2),             nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True), 		    nn.BatchNorm2d(ch_out), 			nn.ReLU(inplace=True)         )      def forward(self,x):         x = self.up(x)         return x  class U_Net_v1(nn.Module):   #添加了空间注意力和通道注意力     def __init__(self,img_ch=3,output_ch=2):         super(U_Net_v1,self).__init__()                  self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2)          self.Conv1 = conv_block(ch_in=img_ch,ch_out=64) #64         self.Conv2 = conv_block(ch_in=64,ch_out=128)  #64 128         self.Conv3 = conv_block(ch_in=128,ch_out=256) #128 256         self.Conv4 = conv_block(ch_in=256,ch_out=512) #256 512         self.Conv5 = conv_block(ch_in=512,ch_out=1024) #512 1024          self.cbam1 = CBAM(channel=64)         self.cbam2 = CBAM(channel=128)         self.cbam3 = CBAM(channel=256)         self.cbam4 = CBAM(channel=512)          self.Up5 = up_conv(ch_in=1024,ch_out=512)  #1024 512         self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)            self.Up4 = up_conv(ch_in=512,ch_out=256)  #512 256         self.Up_conv4 = conv_block(ch_in=512, ch_out=256)                    self.Up3 = up_conv(ch_in=256,ch_out=128)  #256 128         self.Up_conv3 = conv_block(ch_in=256, ch_out=128)                   self.Up2 = up_conv(ch_in=128,ch_out=64) #128 64         self.Up_conv2 = conv_block(ch_in=128, ch_out=64)            self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0)  #64       def forward(self,x):         # encoding path         x1 = self.Conv1(x)         x1 = self.cbam1(x1) + x1          x2 = self.Maxpool(x1)         x2 = self.Conv2(x2)         x2 = self.cbam2(x2) + x2                  x3 = self.Maxpool(x2)         x3 = self.Conv3(x3)         x3 = self.cbam3(x3) + x3          x4 = self.Maxpool(x3)         x4 = self.Conv4(x4)         x4 = self.cbam4(x4) + x4          x5 = self.Maxpool(x4)         x5 = self.Conv5(x5)          # decoding + concat path         d5 = self.Up5(x5)         d5 = torch.cat((x4,d5),dim=1)                  d5 = self.Up_conv5(d5)                  d4 = self.Up4(d5)         d4 = torch.cat((x3,d4),dim=1)         d4 = self.Up_conv4(d4)          d3 = self.Up3(d4)         d3 = torch.cat((x2,d3),dim=1)         d3 = self.Up_conv3(d3)          d2 = self.Up2(d3)         d2 = torch.cat((x1,d2),dim=1)         d2 = self.Up_conv2(d2)          d1 = self.Conv_1x1(d2)          return d1 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!