阅读量:2
U-Net网络模型(注意力改进版本)
这一段时间做项目用到了U-Net网络模型,但是原始的U-Net网络还有很大的改良空间,在卷积下采样的过程中加入了通道注意力和空间注意力 。
常规的U-net模型如下图:
红色箭头为可以添加的地方:即下采样之间。
通道空间注意力是一个即插即用的注意力模块(如下图):
代码加入之后对于分割效果是有提升的:(代码如下)
CBAM代码:
class ChannelAttentionModule(nn.Module): def __init__(self, channel, ratio=16): super(ChannelAttentionModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.shared_MLP = nn.Sequential( nn.Conv2d(channel, channel // ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(channel // ratio, channel, 1, bias=False) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avgout = self.shared_MLP(self.avg_pool(x)) maxout = self.shared_MLP(self.max_pool(x)) return self.sigmoid(avgout + maxout) class SpatialAttentionModule(nn.Module): def __init__(self): super(SpatialAttentionModule, self).__init__() self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3) self.sigmoid = nn.Sigmoid() def forward(self, x): avgout = torch.mean(x, dim=1, keepdim=True) maxout, _ = torch.max(x, dim=1, keepdim=True) out = torch.cat([avgout, maxout], dim=1) out = self.sigmoid(self.conv2d(out)) return out class CBAM(nn.Module): def __init__(self, channel): super(CBAM, self).__init__() self.channel_attention = ChannelAttentionModule(channel) self.spatial_attention = SpatialAttentionModule() def forward(self, x): out = self.channel_attention(x) * x out = self.spatial_attention(out) * out return out
网络模型结合之后代码:
class conv_block(nn.Module): def __init__(self,ch_in,ch_out): super(conv_block,self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True), nn.Conv2d(ch_out, ch_out, kernel_size=3,stride=1,padding=1,bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self,x): x = self.conv(x) return x class up_conv(nn.Module): def __init__(self,ch_in,ch_out): super(up_conv,self).__init__() self.up = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self,x): x = self.up(x) return x class U_Net_v1(nn.Module): #添加了空间注意力和通道注意力 def __init__(self,img_ch=3,output_ch=2): super(U_Net_v1,self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) self.Conv1 = conv_block(ch_in=img_ch,ch_out=64) #64 self.Conv2 = conv_block(ch_in=64,ch_out=128) #64 128 self.Conv3 = conv_block(ch_in=128,ch_out=256) #128 256 self.Conv4 = conv_block(ch_in=256,ch_out=512) #256 512 self.Conv5 = conv_block(ch_in=512,ch_out=1024) #512 1024 self.cbam1 = CBAM(channel=64) self.cbam2 = CBAM(channel=128) self.cbam3 = CBAM(channel=256) self.cbam4 = CBAM(channel=512) self.Up5 = up_conv(ch_in=1024,ch_out=512) #1024 512 self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512,ch_out=256) #512 256 self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256,ch_out=128) #256 128 self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128,ch_out=64) #128 64 self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) #64 def forward(self,x): # encoding path x1 = self.Conv1(x) x1 = self.cbam1(x1) + x1 x2 = self.Maxpool(x1) x2 = self.Conv2(x2) x2 = self.cbam2(x2) + x2 x3 = self.Maxpool(x2) x3 = self.Conv3(x3) x3 = self.cbam3(x3) + x3 x4 = self.Maxpool(x3) x4 = self.Conv4(x4) x4 = self.cbam4(x4) + x4 x5 = self.Maxpool(x4) x5 = self.Conv5(x5) # decoding + concat path d5 = self.Up5(x5) d5 = torch.cat((x4,d5),dim=1) d5 = self.Up_conv5(d5) d4 = self.Up4(d5) d4 = torch.cat((x3,d4),dim=1) d4 = self.Up_conv4(d4) d3 = self.Up3(d4) d3 = torch.cat((x2,d3),dim=1) d3 = self.Up_conv3(d3) d2 = self.Up2(d3) d2 = torch.cat((x1,d2),dim=1) d2 = self.Up_conv2(d2) d1 = self.Conv_1x1(d2) return d1