llama-index,uncharted and llama2:7b run locally to generate Index

avatar
作者
猴君
阅读量:3

题意:本地运行 llama-indexuncharted 以及 llama2:7b 来生成索引

问题背景:

I wanted to use llama-index locally with ollama and llama3:8b to index utf-8 json file. I dont have a gpu. I use uncharted to convert docs into json. Now If it is not possible to use llama-index locally without GPU I wanted to use hugging face inference API. But I am not certain if it is free. Can anyone suggest a way?

This is my python code:

from llama_index.core import Document, SimpleDirectoryReader, VectorStoreIndex     from llama_index.llms.ollama import Ollama     import json     from llama_index.core import Settings               # Convert the JSON document into LlamaIndex Document objects     with open('data/UBER_2019.json', 'r',encoding='utf-8') as f:         json_doc = json.load(f)     documents = [Document(text=str(doc)) for doc in json_doc]          # Initialize Ollama with the local LLM     ollama_llm = Ollama(model="llama3:8b")     Settings.llm = ollama_llm          # Create the index using the local LLM     index = VectorStoreIndex.from_documents(documents)#, llm=ollama_llm)

But i keep getting error that there is no OPENAI key. I wanted to use llama2 so that i dont require OPENAI key

Can anyone suggest what i am doing wrong? Also can i use huggingfaceinference API to do indexing of a local json file for free?

问题解决:

You are not setting the embedding model, so I think Llama Index is defaulting to OpenAI.
You must specify an embedding model that does not require an API key.

You can use Ollama:

from llama_index.embeddings.ollama import OllamaEmbedding  # Using Nomic Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text")  # Using Llama Settings.embed_model = OllamaEmbedding(model_name="llama2")

But there are many options in the documentation like thisthisthis

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!