已知
- 12口井的坐标位置如下:
x=[0.50,1.41,3.00,3.37,3.40,4.72,4.72,5.43,7.57,8.38,8.98, 9.50];
y=[2.00,3.50,1.50,3.51,5.50,2.00,6.24,4.10,2.01,4.50,3.41,0.80]; - 设平面有n个点 P i P_i Pi(表旧井井位),其坐标为 ( a i , b i ) , i = 1 , 2 , … , n (a_i,b_i),i=1,2,…,n (ai,bi),i=1,2,…,n。新置的井位是一个正方形网格 N N N的所有结点。假设每个格子的边长都是 1 1 1单位。整个网格是可以在平面上任意移动的。若一个已知点 P i P_i Pi距某个网格结点 X i X_i Xi的距离不超过给定误差 ϵ \epsilon ϵ,则认为 P i P_i Pi处的旧井井位可以利用,不必在结点处打新井。
需要研究的问题
1)假定网格的横向和纵向是固定的,并规定两点间的距离为其横向距离(横坐标之差的绝对值)及纵向距离(纵坐标之差的绝对值)的最大者,在平面上平移网格N,使可利用的旧井数尽可能大,试提供数值计算方法。
本题主要是要建立旧井可利用判断模型
首先是按照题目建立两点距离符合误差 ϵ \epsilon ϵ范围内的判断模型
若一个已知点 P i P_i Pi ( a i , b i ) (a_i,b_i) (ai,bi)距某个网格结点 X i ( x i , y i ) X_i(x_i,y_i) Xi(xi,yi)的距离不超过给定误差 ϵ \epsilon ϵ
{ ∣ a i − x i ∣ ≤ ϵ ∣ b i − y i ∣ ≤ ϵ \begin{cases} |a_i-x_i| \le \epsilon \\ |b_i-y_i| \le \epsilon \end{cases} {∣ai−xi∣≤ϵ∣bi−yi∣≤ϵ
或者
max ( ∣ a i − x i ∣ , ∣ b i − y i ∣ ) ≤ ϵ \max{(|a_i-x_i|,|b_i-y_i|)}\le \epsilon max(∣ai−xi∣,∣bi−yi∣)≤ϵ
其次是网格平移模型,因为要研究的是网格平行对井的位置变化
设网格向右平移 x x x个单位,向上平移 y y y个单位;一个已知点 P i P_i Pi ( a i , b i ) (a_i,b_i) (ai,bi)
;网格平移后新点位置 P j ( a j , b j ) P_j(a_j,b_j) Pj(aj,bj)
有 { a j = a i + x b j = b i + y \begin{cases} a_j = a_i+x \\ b_j = b_i + y \end{cases} {aj=ai+xbj=bi+y
综合上述模型和要可利用的旧井数尽可能大可得模型:
{ a n s = max ∑ i ∈ N 1 ≤ i ≤ n f i max ( ∣ a i + x − x i ∣ , ∣ b i + y − y i ∣ ) f i ≤ ϵ \begin{cases} ans = \max \sum_{\substack{i\in N\\1\le i\le n} }{fi} \\ \max{(|a_i+x-x_i|,|b_i + y-y_i|)f_i}\le \epsilon \end{cases} {ans=max∑i∈N1≤i≤nfimax(∣ai+x−xi∣,∣bi+y−yi∣)fi≤ϵ
现在还剩下一个问题某个网格结点 X i ( x i , y i ) X_i(x_i,y_i) Xi(xi,yi)是哪个网格点
这里问题就可以变成一个已知点 P j P_j Pj ( a j , b j ) (a_j,b_j) (aj,bj)求距离其最近的网格点 X j ( x j , y j ) X_j(x_j,y_j) Xj(xj,yj)
将一个小格子划分为四个区域观察规律可得
{ x j = ⌊ a j + 0.5 ⌋ y j = ⌊ b j + 0.5 ⌋ \begin{cases} x_j = \lfloor a_j+0.5 \rfloor \\ y_j = \lfloor b_j+0.5 \rfloor \end{cases} {xj=⌊aj+0.5⌋yj=⌊bj+0.5⌋
将这个式子带入我们的模型中可得
{ a n s = max ∑ i ∈ N 1 ≤ i ≤ n f i max ( ∣ a i + x − ⌊ a i + x + 0.5 ⌋ ∣ , ∣ b i + y − ⌊ b i + y + 0.5 ⌋ ∣ ) f i ≤ ϵ \begin{cases} ans = \max \sum_{\substack{i\in N\\1\le i\le n} }{fi} \\ \max{(|a_i+x-\lfloor a_i+x+0.5 \rfloor|,|b_i + y-\lfloor b_i+y+0.5 \rfloor|)f_i}\le \epsilon \end{cases} {ans=max∑i∈N1≤i≤nfimax(∣ai+x−⌊ai+x+0.5⌋∣,∣bi+y−⌊bi+y+0.5⌋∣)fi≤ϵ
给出12口井的坐标, ϵ = 0.05 \epsilon = 0.05 ϵ=0.05 , 按照问题一的要求求解
按照问题一给的模型,进行调整
{ a n s = max ∑ i ∈ N 1 ≤ i ≤ n f i max ( ∣ x i + x − ⌊ x i + x + 0.5 ⌋ ∣ , ∣ y i + y − ⌊ y i + y + 0.5 ⌋ ∣ ) f i ≤ 0.05 \begin{cases} ans = \max \sum_{\substack{i\in N\\1\le i\le n} }{fi} \\ \max{(|x_i+x-\lfloor x_i+x+0.5 \rfloor|,|y_i + y-\lfloor y_i+y+0.5 \rfloor|)f_i}\le 0.05 \end{cases} {ans=max∑i∈N1≤i≤nfimax(∣xi+x−⌊xi+x+0.5⌋∣,∣yi+y−⌊yi+y+0.5⌋∣)fi≤0.05
LINGO求解
sets: aa/1..12/:a,b,f; endsets data: a=0.50,1.41,3.00,3.37,3.40,4.72,4.72,5.43,7.57,8.38,8.98,9.50; b=2.00,3.50,1.50,3.51,5.50,2.00,6.24,4.10,2.01,4.50,3.41,0.80; enddata max = @sum(aa(i):f(i)); @for(aa(i):@bin(f(i))); @for(aa(i):@smax(@abs(a(i)+x1-@floor(a(i)+x1+0.5)),@abs(b(i)+y1-@floor(b(i)+y1+0.5)))*f(i)<=0.05); x1<1; y1<1;
or
{ a n s = max ∑ i ∈ N 1 ≤ i ≤ n f i ∣ x i + x − ⌊ x i + x + 0.5 ⌋ ∣ f i ≤ 0.05 ∣ y i + y − ⌊ y i + y + 0.5 ⌋ ∣ f i ≤ 0.05 \begin{cases} ans = \max \sum_{\substack{i\in N\\1\le i\le n} }{fi} \\ |x_i+x-\lfloor x_i+x+0.5 \rfloor|f_i\le 0.05\\|y_i + y-\lfloor y_i+y+0.5 \rfloor|f_i\le 0.05 \end{cases} ⎩⎨⎧ans=max∑i∈N1≤i≤nfi∣xi+x−⌊xi+x+0.5⌋∣fi≤0.05∣yi+y−⌊yi+y+0.5⌋∣fi≤0.05
sets: aa/1..12/:a,b,f; endsets data: a=0.50,1.41,3.00,3.37,3.40,4.72,4.72,5.43,7.57,8.38,8.98,9.50; b=2.00,3.50,1.50,3.51,5.50,2.00,6.24,4.10,2.01,4.50,3.41,0.80; enddata max = @sum(aa(i):f(i)); @for(aa(i):@bin(f(i))); @for(aa(i):@abs(a(i)+x1-@floor(a(i)+x1+0.5))*f(i)<=0.05); @for(aa(i):@abs(b(i)+y1-@floor(b(i)+y1+0.5))*f(i)<=0.05); x1<1; y1<1;
答案如下
Objective value: 4.000000 Objective bound: 4.000000 F( 1) 0.000000 -1.000000 F( 2) 1.000000 0.000000 F( 3) 0.000000 -1.000000 F( 4) 1.000000 -1.000000 F( 5) 1.000000 0.000000 F( 6) 0.000000 -1.000000 F( 7) 0.000000 -1.000000 F( 8) 0.000000 -1.000000 F( 9) 0.000000 -1.000000 F( 10) 1.000000 0.000000 F( 11) 0.000000 -1.000000 F( 12) 0.000000 -1.000000