阅读量:4
图的存储
邻接矩阵
使用 二维数组 来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。为了节点标号和下标对齐,我们申请 n + 1 * n + 1 这么大的二维数组。
vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0));
输入m个边,构造方式如下:
while (m--) { cin >> s >> t; // 使用邻接矩阵 ,1 表示 节点s 指向 节点t graph[s][t] = 1; }
邻接表
邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。
// 节点编号从1到n,所以申请 n+1 这么大的数组 vector<list<int>> graph(n + 1); // 邻接表,list为C++里的链表
输入m个边,构造方式如下:
while (m--) { cin >> s >> t; // 使用邻接表 ,表示 s -> t 是相连的 graph[s].push_back(t); }
给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个函数,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。
邻接矩阵
#include<bits/stdc++.h> using namespace std; vector<vector<int>> result; // 收集符合条件的路径 vector<int> path; void dfs (const vector<vector<int>>& graph, int x, int n) { // 当前遍历的节点x 到达节点n if (x == n) { // 找到符合条件的一条路径 result.push_back(path); return; } for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点 if (graph[x][i] == 1) { // 找到 x链接的节点 path.push_back(i); // 遍历到的节点加入到路径中来 dfs(graph, i, n); // 进入下一层递归 path.pop_back(); // 回溯,撤销本节点 } } } int main(){ int n, m, s, t; cin >> n >> m; // 节点编号从1到n,所以申请 n+1 这么大的数组 vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0)); while (m--) { cin >> s >> t; // 使用邻接矩阵 表示无线图,1 表示 s 与 t 是相连的 graph[s][t] = 1; } path.push_back(1); // 无论什么路径已经是从0节点出发 dfs(graph, 1, n); // 开始遍历 // 输出结果 if (result.size() == 0) cout << -1 << endl; for (const vector<int> &pa : result) { for (int i = 0; i < pa.size() - 1; i++) { cout << pa[i] << " "; } cout << pa[pa.size() - 1] << endl; } return 0; }
邻接表
#include<bits/stdc++.h> using namespace std; vector<vector<int>> result; // 收集符合条件的路径 vector<int> path; void dfs (const vector<list<int>>& graph, int x, int n) { // 当前遍历的节点x 到达节点n if (x == n) { // 找到符合条件的一条路径 result.push_back(path); return; } for (int i : graph[x]) { // 找到 x指向的节点 path.push_back(i); // 遍历到的节点加入到路径中来 dfs(graph, i, n); // 进入下一层递归 path.pop_back(); // 回溯,撤销本节点 } } int main(){ int n, m, s, t; cin >> n >> m; // 节点编号从1到n,所以申请 n+1 这么大的数组 vector<list<int>> graph(n + 1); // 邻接表 while (m--) { cin >> s >> t; // 使用邻接表 ,表示 s -> t 是相连的 graph[s].push_back(t); } path.push_back(1); // 无论什么路径已经是从0节点出发 dfs(graph, 1, n); // 开始遍历 // 输出结果 if (result.size() == 0) cout << -1 << endl; for (const vector<int> &pa : result) { for (int i = 0; i < pa.size() - 1; i++) { cout << pa[i] << " "; } cout << pa[pa.size() - 1] << endl; } return 0; }
给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)
graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。
class Solution { public: vector<vector<int>> result; vector<int> path; void dfs(vector<vector<int>>& graph, int x, int n){ if(x == n){ result.push_back(path); return; } for(int i : graph[x]){ path.push_back(i); dfs(graph, i, n); path.pop_back(); } } vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) { path.push_back(0); dfs(graph, 0, graph.size() - 1); return result; } };
广搜代码模板
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向 // grid 是地图,也就是一个二维数组 // visited标记访问过的节点,不要重复访问 // x,y 表示开始搜索节点的下标 void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) { queue<pair<int, int>> que; // 定义队列 que.push({x, y}); // 起始节点加入队列 visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点 while(!que.empty()) { // 开始遍历队列里的元素 pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素 int curx = cur.first; int cury = cur.second; // 当前节点坐标 for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历 int nextx = curx + dir[i][0]; int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标 if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 坐标越界了,直接跳过 if (!visited[nextx][nexty]) { // 如果节点没被访问过 que.push({nextx, nexty}); // 队列添加该节点为下一轮要遍历的节点 visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问 } } } }