【深度学习模型】扩散模型(Diffusion Model)基本原理及代码讲解

avatar
作者
猴君
阅读量:3
  1. 前言

生成式建模的扩散思想实际上已经在2015年(Sohl-Dickstein等人)提出,然而,直到2019年斯坦福大学(Song等人)、2020年Google Brain(Ho等人)才改进了这个方法,从此引发了生成式模型的新潮流。目前,包括OpenAI的GLIDE和DALL-E 2,海德堡大学的Latent Diffusion和Google Brain的ImageGen,都基于diffusion模型,并可以得到高质量的生成效果。本文以下讲解主要基于DDPM,并适当地增加一些目前有效的改进内容。

  1. 基本原理

扩散模型包括两个步骤:

  1. 固定的(或预设的)前向扩散过程q:该过程会逐渐将高斯噪声添加到图像中,直到最终得到纯噪声。

  1. 训练的反向去噪扩散过程:训练一个神经网络,从纯噪音开始逐渐去噪,直到得到一个真实图像。

前向与后向的步数由下标 t定义,并且有预先定义好的总步数 T(DDPM原文中为1000)。

t=0 时为从数据集中采样得到的一张真实图片, t=T 时近似为一张纯粹的噪声。

2.1 直观理解

为了看懂扩散模型查了很多资料,但是要么就是大量的数学公式,一行行公式推完了还是不知道它想干啥。要么就是高视角,上来就和能量模型,VAE放一块儿对比说共同点和不同点,看完还是云里雾里。然而事实上下面几句话就能把扩散模型说明白了
扩散模型的目的是什么?
学习从纯噪声生成图片的方法
扩散模型是怎么做的?
训练一个U-Net,接受一系列加了噪声的图片,学习预测所加的噪声
前向过程在干啥?
逐步向真实图片添加噪声最终得到一个纯噪声
对于训练集中的每张图片,都能生成一系列的噪声程度不同的加噪图片
在训练时,这些 【不同程度的噪声图片 + 生成它们所用的噪声】 是实际的训练样本
反向过程在干啥?
训练好模型后,采样、生成图片

2.2 数学形式

2.2.1 前向过程

是真实数据分布(也就是真实的大量图片),从这个分布中采样即可得到一张真实图片 。我们定义前向扩散过程为 ,即每一个step向图片添加噪声的过程,并定义好一系列,则有:

其中,N为正态分布,均值和方差分别为,因此通过采样标准正态分布,有:

2.2.2 反向过程

那么问题的核心就是如何得到的逆过程 ,这个过程无法直接求出来,所以我们使用神经网络去拟合这一分布。我们使用一个具有参数的神经网络去计算 。假设反向的条件概率分布也是高斯分布,且高斯分布实际上只有两个参数:均值和方差,那么神经网络需要计算的实际上是

在DDPM中,方差被固定,网络只学习均值。而之后的改进模型中,方差也可由网络学习得到。

2.2.3 总结过程

总之,我们定义这么一个过程:给一张图片逐步加噪声直到变成纯粹的噪声,然后对噪声进行去噪得到真实的图片。所谓的扩散模型就是让神经网络学习这个去除噪声的方法。
所谓的加噪声,就是基于稍微干净的图片计算一个(多维)高斯分布(每个像素点都有一个高斯分布,且均值就是这个像素点的值,方差是预先定义的 ),然后从这个多维分布中抽样一个数据出来,这个数据就是加噪之后的结果。显然,如果方差非常非常小,那么每个抽样得到的像素点就和原本的像素点的值非常接近,也就是加了一个非常非常小的噪声。如果方差比较大,那么抽样结果就会和原本的结果差距较大。
去噪声也是同理,我们基于稍微噪声的图片 计算一个条件分布,我们希望从这个分布中抽样得到的是相比于 更加接近真实图片的稍微干净的图片。我们假设这样的条件分布是存在的,并且也是个高斯分布,那么我们只需要知道均值和方差就可以了。问题是这个均值和方差是无法直接计算的,所以用神经网络去学习近似这样一个高斯分布。

2.3 网络训练流程

我们最终要训练的实际上是一个噪声预测器。神经网络输出的噪声是,而真实的噪声取自于正态分布。则损失函数为:

预测网络方面,DDPM采用了 U-Net。

从而,网络的训练流程为:

  1. 我们接受一个随机的样本

  1. 我们随机从 1 到 T 采样一个 t;

  1. 我们从高斯分布采样一些噪声并且施加在输入上;

  1. 网络从被影响过后的噪声图片学习其被施加了的噪声。

  1. 代码

3.1 Network helpers

先是一些辅助函数和类。

def exists(x):     return x is not None  # 有val时返回val,val为None时返回d def default(val, d):     if exists(val):         return val     return d() if isfunction(d) else d  # 残差模块,将输入加到输出上 class Residual(nn.Module):     def __init__(self, fn):         super().__init__()         self.fn = fn      def forward(self, x, *args, **kwargs):         return self.fn(x, *args, **kwargs) + x  # 上采样(反卷积) def Upsample(dim):     return nn.ConvTranspose2d(dim, dim, 4, 2, 1)  # 下采样 def Downsample(dim):     return nn.Conv2d(dim, dim, 4, 2, 1)

3.2 Positional embeddings

类似于Transformer的positional embedding,为了让网络知道当前处理的是一系列去噪过程中的哪一个step,我们需要将步数 t 也编码并传入网络之中。DDPM采用正弦位置编码(Sinusoidal Positional Embeddings)。这一方法的输入是shape为 (batch_size, 1) 的 tensor,也就是batch中每一个sample所处的t ,并将这个tensor转换为shape为 (batch_size, dim) 的 tensor。这个tensor会被加到每一个残差模块中。

class SinusoidalPositionEmbeddings(nn.Module):     def __init__(self, dim):         super().__init__()         self.dim = dim      def forward(self, time):         device = time.device         half_dim = self.dim // 2         embeddings = math.log(10000) / (half_dim - 1)         embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)         embeddings = time[:, None] * embeddings[None, :]         embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)         return embeddings

3.3 ResNet/ConvNeXT block

U-Net的Block实现,可以用ResNet或ConvNeXT。

class Block(nn.Module):     def __init__(self, dim, dim_out, groups = 8):         super().__init__()         self.proj = nn.Conv2d(dim, dim_out, 3, padding = 1)         self.norm = nn.GroupNorm(groups, dim_out)         self.act = nn.SiLU()      def forward(self, x, scale_shift = None):         x = self.proj(x)         x = self.norm(x)          if exists(scale_shift):             scale, shift = scale_shift             x = x * (scale + 1) + shift          x = self.act(x)         return x  class ResnetBlock(nn.Module):     """Deep Residual Learning for Image Recognition"""          def __init__(self, dim, dim_out, *, time_emb_dim=None, groups=8):         super().__init__()         self.mlp = (             nn.Sequential(nn.SiLU(), nn.Linear(time_emb_dim, dim_out))             if exists(time_emb_dim)             else None         )          self.block1 = Block(dim, dim_out, groups=groups)         self.block2 = Block(dim_out, dim_out, groups=groups)         self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()      def forward(self, x, time_emb=None):         h = self.block1(x)          if exists(self.mlp) and exists(time_emb):             time_emb = self.mlp(time_emb)             h = rearrange(time_emb, "b c -> b c 1 1") + h          h = self.block2(h)         return h + self.res_conv(x)      class ConvNextBlock(nn.Module):     """A ConvNet for the 2020s"""      def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):         super().__init__()         self.mlp = (             nn.Sequential(nn.GELU(), nn.Linear(time_emb_dim, dim))             if exists(time_emb_dim)             else None         )          self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, groups=dim)          Get an email address at self.net. It's ad-free, reliable email that's based on your own name | self.net = nn.Sequential(             nn.GroupNorm(1, dim) if norm else nn.Identity(),             nn.Conv2d(dim, dim_out * mult, 3, padding=1),             nn.GELU(),             nn.GroupNorm(1, dim_out * mult),             nn.Conv2d(dim_out * mult, dim_out, 3, padding=1),         )         self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()      def forward(self, x, time_emb=None):         h = self.ds_conv(x)          if exists(self.mlp) and exists(time_emb):             condition = self.mlp(time_emb)             h = h + rearrange(condition, "b c -> b c 1 1")          h = Get an email address at self.net. It's ad-free, reliable email that's based on your own name | self.net(h)         return h + self.res_conv(x)

3.4 Attention module

包含两种attention模块,一个是常规的 multi-head self-attention,一个是 linear attention variant。

class Attention(nn.Module):     def __init__(self, dim, heads=4, dim_head=32):         super().__init__()         self.scale = dim_head**-0.5         self.heads = heads         hidden_dim = dim_head * heads         self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)         self.to_out = nn.Conv2d(hidden_dim, dim, 1)      def forward(self, x):         b, c, h, w = x.shape         qkv = self.to_qkv(x).chunk(3, dim=1)         q, k, v = map(             lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv         )         q = q * self.scale          sim = einsum("b h d i, b h d j -> b h i j", q, k)         sim = sim - sim.amax(dim=-1, keepdim=True).detach()         attn = sim.softmax(dim=-1)          out = einsum("b h i j, b h d j -> b h i d", attn, v)         out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w)         return self.to_out(out)  class LinearAttention(nn.Module):     def __init__(self, dim, heads=4, dim_head=32):         super().__init__()         self.scale = dim_head**-0.5         self.heads = heads         hidden_dim = dim_head * heads         self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)          self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1),                                      nn.GroupNorm(1, dim))      def forward(self, x):         b, c, h, w = x.shape         qkv = self.to_qkv(x).chunk(3, dim=1)         q, k, v = map(             lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv         )          q = q.softmax(dim=-2)         k = k.softmax(dim=-1)          q = q * self.scale         context = torch.einsum("b h d n, b h e n -> b h d e", k, v)          out = torch.einsum("b h d e, b h d n -> b h e n", context, q)         out = rearrange(out, "b h c (x y) -> b (h c) x y", h=self.heads, x=h, y=w)         return self.to_out(out)

3.5 Group normalization

DDPM的作者对U-Net的卷积/注意力层使用GN正则化。下面,我们定义了一个PreNorm类,它将被用于在注意力层之前应用groupnorm。值得注意的是,归一化在Transformer中是在注意力之前还是之后应用,目前仍存在着争议。

class PreNorm(nn.Module):     def __init__(self, dim, fn):         super().__init__()         self.fn = fn         self.norm = nn.GroupNorm(1, dim)      def forward(self, x):         x = self.norm(x)         return self.fn(x)

3.6 Conditional U-Net

现在,我们已经定义了所有的组件,接下来就是定义完整的网络了。

输入:噪声图片的batch+这些图片各自的t。

输出:预测每个图片上所添加的噪声。

Input:a batch of noisy images of shape ( batch_size, num_channels, h, w ) and a batch of steps of shape ( batch_size, 1 )
output: a tensor of shape ( batch_size, num_channels, h, w )

具体的网络结构:

  1. 首先,输入通过一个卷积层,同时计算step t 所对应的embedding

  1. 通过一系列的下采样stage,每个stage都包含:2个ResNet/ConvNeXT blocks + groupnorm + attention + residual connection + downsample operation

  1. 在网络中间,应用一个带attention的ResNet或者ConvNeXT

  1. 通过一系列的上采样stage,每个stage都包含:2个ResNet/ConvNeXT blocks + groupnorm + attention + residual connection + upsample operation

  1. 最终,通过一个ResNet/ConvNeXT blocl和一个卷积层。

class Unet(nn.Module):     def __init__(         self,         dim,         init_dim=None,         out_dim=None,         dim_mults=(1, 2, 4, 8),         channels=3,         with_time_emb=True,         resnet_block_groups=8,         use_convnext=True,         convnext_mult=2,     ):         super().__init__()          # determine dimensions         self.channels = channels          init_dim = default(init_dim, dim // 3 * 2)         self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3)          dims = [init_dim, *map(lambda m: dim * m, dim_mults)]         in_out = list(zip(dims[:-1], dims[1:]))                  if use_convnext:             block_klass = partial(ConvNextBlock, mult=convnext_mult)         else:             block_klass = partial(ResnetBlock, groups=resnet_block_groups)          # time embeddings         if with_time_emb:             time_dim = dim * 4             self.time_mlp = nn.Sequential(                 SinusoidalPositionEmbeddings(dim),                 nn.Linear(dim, time_dim),                 nn.GELU(),                 nn.Linear(time_dim, time_dim),             )         else:             time_dim = None             self.time_mlp = None          # layers         self.downs = nn.ModuleList([])         self.ups = nn.ModuleList([])         num_resolutions = len(in_out)          for ind, (dim_in, dim_out) in enumerate(in_out):             is_last = ind >= (num_resolutions - 1)              self.downs.append(                 nn.ModuleList(                     [                         block_klass(dim_in, dim_out, time_emb_dim=time_dim),                         block_klass(dim_out, dim_out, time_emb_dim=time_dim),                         Residual(PreNorm(dim_out, LinearAttention(dim_out))),                         Downsample(dim_out) if not is_last else nn.Identity(),                     ]                 )             )          mid_dim = dims[-1]         self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)         self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))         self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)          for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):             is_last = ind >= (num_resolutions - 1)              self.ups.append(                 nn.ModuleList(                     [                         block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),                         block_klass(dim_in, dim_in, time_emb_dim=time_dim),                         Residual(PreNorm(dim_in, LinearAttention(dim_in))),                         Upsample(dim_in) if not is_last else nn.Identity(),                     ]                 )             )          out_dim = default(out_dim, channels)         self.final_conv = nn.Sequential(             block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1)         )      def forward(self, x, time):         x = self.init_conv(x)         t = self.time_mlp(time) if exists(self.time_mlp) else None         h = []          # downsample         for block1, block2, attn, downsample in self.downs:             x = block1(x, t)             x = block2(x, t)             x = attn(x)             h.append(x)             x = downsample(x)          # bottleneck         x = self.mid_block1(x, t)         x = self.mid_attn(x)         x = self.mid_block2(x, t)          # upsample         for block1, block2, attn, upsample in self.ups:             x = torch.cat((x, h.pop()), dim=1)             x = block1(x, t)             x = block2(x, t)             x = attn(x)             x = upsample(x)          return self.final_conv(x)

3.7 定义前向扩散过程

DDPM中使用linear schedule定义 后续的研究指出使用cosine schedule可能会有更好的效果。

接下来是一些简单的对于 schedule 的定义,从当中选一个使用即可。

def cosine_beta_schedule(timesteps, s=0.008):     """     cosine schedule as proposed in https://arxiv.org/abs/2102.09672     """     steps = timesteps + 1     x = torch.linspace(0, timesteps, steps)     alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2     alphas_cumprod = alphas_cumprod / alphas_cumprod[0]     betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])     return torch.clip(betas, 0.0001, 0.9999)  def linear_beta_schedule(timesteps):     beta_start = 0.0001     beta_end = 0.02     return torch.linspace(beta_start, beta_end, timesteps)  def quadratic_beta_schedule(timesteps):     beta_start = 0.0001     beta_end = 0.02     return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps) ** 2  def sigmoid_beta_schedule(timesteps):     beta_start = 0.0001     beta_end = 0.02     betas = torch.linspace(-6, 6, timesteps)     return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start 

我们按照DDPM中用第二种的linear,将 T 设置为200,并将每个 t 下的各种参数提前计算好。

timesteps = 200  # define beta schedule betas = linear_beta_schedule(timesteps=timesteps)  # define alphas  alphas = 1. - betas alphas_cumprod = torch.cumprod(alphas, axis=0) alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0) sqrt_recip_alphas = torch.sqrt(1.0 / alphas)  # calculations for diffusion q(x_t | x_{t-1}) and others sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)  # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)  def extract(a, t, x_shape):     batch_size = t.shape[0]     out = a.gather(-1, t.cpu())     return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)

我们用一个实例来说明前向加噪过程。

from PIL import Image import requests  url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) image
from torchvision.transforms import Compose, ToTensor, Lambda, ToPILImage, CenterCrop, Resize  image_size = 128 transform = Compose([     Resize(image_size),     CenterCrop(image_size),     ToTensor(), # turn into Numpy array of shape HWC, divide by 255     Lambda(lambda t: (t * 2) - 1), ])  x_start = transform(image).unsqueeze(0) x_start.shape  # 输出的结果是 torch.Size([1, 3, 128, 128])  import numpy as np  reverse_transform = Compose([      Lambda(lambda t: (t + 1) / 2),      Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC      Lambda(lambda t: t * 255.),      Lambda(lambda t: t.numpy().astype(np.uint8)),      ToPILImage(), ])

准备齐全,接下来就可以定义正向扩散过程了。

# forward diffusion (using the nice property) def q_sample(x_start, t, noise=None):     if noise is None:         noise = torch.randn_like(x_start)      sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape)     sqrt_one_minus_alphas_cumprod_t = extract(         sqrt_one_minus_alphas_cumprod, t, x_start.shape     )      return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise  def get_noisy_image(x_start, t):   # add noise   x_noisy = q_sample(x_start, t=t)    # turn back into PIL image   noisy_image = reverse_transform(x_noisy.squeeze())    return noisy_image

可视化一下多个不同t的生成结果。

import matplotlib.pyplot as plt  # use seed for reproducability torch.manual_seed(0)  # source: https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py def plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):     if not isinstance(imgs[0], list):         # Make a 2d grid even if there's just 1 row         imgs = [imgs]      num_rows = len(imgs)     num_cols = len(imgs[0]) + with_orig     fig, axs = plt.subplots(figsize=(200,200), nrows=num_rows, ncols=num_cols, squeeze=False)     for row_idx, row in enumerate(imgs):         row = [image] + row if with_orig else row         for col_idx, img in enumerate(row):             ax = axs[row_idx, col_idx]             ax.imshow(np.asarray(img), **imshow_kwargs)             ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])      if with_orig:         axs[0, 0].set(title='Original image')         axs[0, 0].title.set_size(8)     if row_title is not None:         for row_idx in range(num_rows):             axs[row_idx, 0].set(ylabel=row_title[row_idx])      plt.tight_layout()  plot([get_noisy_image(x_start, torch.tensor([t])) for t in [0, 50, 100, 150, 199]])

3.8 定义损失函数

def p_losses(denoise_model, x_start, t, noise=None, loss_type="l1"):     # 先采样噪声     if noise is None:         noise = torch.randn_like(x_start)          # 用采样得到的噪声去加噪图片     x_noisy = q_sample(x_start=x_start, t=t, noise=noise)     predicted_noise = denoise_model(x_noisy, t)          # 根据加噪了的图片去预测采样的噪声     if loss_type == 'l1':         loss = F.l1_loss(noise, predicted_noise)     elif loss_type == 'l2':         loss = F.mse_loss(noise, predicted_noise)     elif loss_type == "huber":         loss = F.smooth_l1_loss(noise, predicted_noise)     else:         raise NotImplementedError()      return loss

3.9 定义数据集 PyTorch Dataset 和 DataLoader

我们使用mnist数据集构造了一个 DataLoader,每个batch由128张 normalize 过的 image 组成。

from datasets import load_dataset  # load dataset from the hub dataset = load_dataset("fashion_mnist") image_size = 28 channels = 1 batch_size = 128   from torchvision import transforms from torch.utils.data import DataLoader  transform = Compose([             transforms.RandomHorizontalFlip(),             transforms.ToTensor(),             transforms.Lambda(lambda t: (t * 2) - 1) ])  def transforms(examples):    examples["pixel_values"] = [transform(image.convert("L")) for image in examples["image"]]    del examples["image"]     return examples  transformed_dataset = dataset.with_transform(transforms).remove_columns("label") dataloader = DataLoader(transformed_dataset["train"], batch_size=batch_size, shuffle=True) batch = next(iter(dataloader)) print(batch.keys())    # dict_keys(['pixel_values'])

3.10 采样

采样过程发生在反向去噪时。对于一张纯噪声,扩散模型一步步地去除噪声最终得到真实图片,采样事实上就是定义的去除噪声这一行为。 观察采样算法中第四行, t−1 步的图片是由 t 步的图片减去一个噪声得到的,只不过这个噪声是由网络拟合出来,并且 rescale 过的而已。 这里要注意第四行式子的最后一项,采样时每一步也都会加上一个从正态分布采样的纯噪声。理想情况下,最终我们会得到一张看起来像是从真实数据分布中采样得到的图片。

@torch.no_grad() def p_sample(model, x, t, t_index):     betas_t = extract(betas, t, x.shape)     sqrt_one_minus_alphas_cumprod_t = extract(         sqrt_one_minus_alphas_cumprod, t, x.shape     )     sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)          # Equation 11 in the paper     # Use our model (noise predictor) to predict the mean     model_mean = sqrt_recip_alphas_t * (         x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t     )      if t_index == 0:         return model_mean     else:         posterior_variance_t = extract(posterior_variance, t, x.shape)         noise = torch.randn_like(x)         # Algorithm 2 line 4:         return model_mean + torch.sqrt(posterior_variance_t) * noise   # Algorithm 2 (including returning all images) @torch.no_grad() def p_sample_loop(model, shape):     device = next(model.parameters()).device      b = shape[0]     # start from pure noise (for each example in the batch)     img = torch.randn(shape, device=device)     imgs = []      for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):         img = p_sample(model, img, torch.full((b,), i, device=device, dtype=torch.long), i)         imgs.append(img.cpu().numpy())     return imgs  @torch.no_grad() def sample(model, image_size, batch_size=16, channels=3):     return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))

3.11 训练

先定义一些辅助生成图片的函数。

from pathlib import Path  def num_to_groups(num, divisor):     groups = num // divisor     remainder = num % divisor     arr = [divisor] * groups     if remainder > 0:         arr.append(remainder)     return arr  results_folder = Path("./results") results_folder.mkdir(exist_ok = True) save_and_sample_every = 1000

接下来实例化模型。

from torch.optim import Adam  device = "cuda" if torch.cuda.is_available() else "cpu"  model = Unet(     dim=image_size,     channels=channels,     dim_mults=(1, 2, 4,) ) model.to(device)  optimizer = Adam(model.parameters(), lr=1e-3)

开始训练!

from torchvision.utils import save_image  epochs = 6  for epoch in range(epochs):     for step, batch in enumerate(dataloader):       optimizer.zero_grad()        batch_size = batch["pixel_values"].shape[0]       batch = batch["pixel_values"].to(device)        # Algorithm 1 line 3: sample t uniformally for every example in the batch       t = torch.randint(0, timesteps, (batch_size,), device=device).long()        loss = p_losses(model, batch, t, loss_type="huber")        if step % 100 == 0:         print("Loss:", loss.item())        loss.backward()       optimizer.step()        # save generated images       if step != 0 and step % save_and_sample_every == 0:         milestone = step // save_and_sample_every         batches = num_to_groups(4, batch_size)         all_images_list = list(map(lambda n: sample(model, batch_size=n, channels=channels), batches))         all_images = torch.cat(all_images_list, dim=0)         all_images = (all_images + 1) * 0.5         save_image(all_images, str(results_folder / f'sample-{milestone}.png'), nrow = 6)

Inference:

# sample 64 images samples = sample(model, image_size=image_size, batch_size=64, channels=channels)  # show a random one random_index = 5 plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap="gray")
import matplotlib.animation as animation  random_index = 53  fig = plt.figure() ims = [] for i in range(timesteps):     im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap="gray", animated=True)     ims.append([im])  animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000) animate.save('diffusion.gif') plt.show()

4. 参考文献

原理+代码:Diffusion Model 直观理解

The Annotated Diffusion Model

【diffusion】扩散模型详解!理论+代码

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!