昇思25天学习打卡营第二十四天|基于MindSpore通过GPT实现情感分类

avatar
作者
筋斗云
阅读量:3

基于MindSpore通过GPT实现情感分类

导入数据集

import os  import mindspore from mindnlp._legacy.engine import Evaluator, Trainer from mindnlp._legacy.engine.callbacks import BestModelCallback, CheckpointCallback from mindnlp._legacy.metrics import Accuracy from mindnlp.dataset import load_dataset from mindspore import nn from mindspore.dataset import GeneratorDataset, text, transforms   imdb_ds = load_dataset("imdb", split=["train", "test"]) imdb_train = imdb_ds["train"] imdb_test = imdb_ds["test"] 

对数据集进行预处理

import numpy as np   def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):     is_ascend = mindspore.get_context("device_target") == "Ascend"      def tokenize(text):         if is_ascend:             tokenized = tokenizer(                 text, padding="max_length", truncation=True, max_length=max_seq_len             )         else:             tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)         return tokenized["input_ids"], tokenized["attention_mask"]      if shuffle:         dataset = dataset.shuffle(batch_size)      # map dataset     dataset = dataset.map(         operations=[tokenize],         input_columns="text",         output_columns=["input_ids", "attention_mask"],     )     dataset = dataset.map(         operations=transforms.TypeCast(mindspore.int32),         input_columns="label",         output_columns="labels",     )     # batch dataset     if is_ascend:         dataset = dataset.batch(batch_size)     else:         dataset = dataset.padded_batch(             batch_size,             pad_info={                 "input_ids": (None, tokenizer.pad_token_id),                 "attention_mask": (None, 0),             },         )      return dataset 

导入 tokenizer

from mindnlp.transformers import GPTTokenizer  # tokenizer gpt_tokenizer = GPTTokenizer.from_pretrained("openai-gpt")  # add sepcial token: <PAD> special_tokens_dict = {     "bos_token": "<bos>",     "eos_token": "<eos>",     "pad_token": "<pad>", } num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict) 

分割训练数据集

# split train dataset into train and valid datasets imdb_train, imdb_val = imdb_train.split([0.7, 0.3]) 

导入训练模型

from mindnlp.transformers import GPTForSequenceClassification from mindspore.experimental.optim import Adam  # set bert config and define parameters for training model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2) model.config.pad_token_id = gpt_tokenizer.pad_token_id model.resize_token_embeddings(model.config.vocab_size + 3)  optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)  metric = Accuracy()  # define callbacks to save checkpoints ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2) best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)  trainer = Trainer(network=model, train_dataset=dataset_train,                   eval_dataset=dataset_train, metrics=metric,                   epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],                   jit=False) 

开始训练

trainer.run(tgt_columns="labels") 

验证

evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric) evaluator.run(tgt_columns="labels") 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!