昇思25天学习打卡营第23天|基于MindSpore的GPT2文本摘要

avatar
作者
猴君
阅读量:1

这节课主要学习基于MindSpore的GPT2文本摘要。主要包括环境安装、数据集加载与处理、模型构建、模型训练、模型推理五部分内容。

1.首先介绍环境安装

%%capture captured_output # 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号 !pip uninstall mindspore -y !pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14 
!pip install tokenizers==0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple # 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1` !pip install mindnlp 

搭建mindspore深度学习环境。

2.数据集加载与处理
2.1 数据集加载
实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

from mindnlp.utils import http_get  # download dataset url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt' path = http_get(url, './') 
from mindspore.dataset import TextFileDataset  # load dataset dataset = TextFileDataset(str(path), shuffle=False) dataset.get_dataset_size() 
# split into training and testing dataset train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False) 

2.2 数据预处理

原始数据格式:
article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]
预处理后的数据格式:
[CLS] article_context [SEP] summary_context [SEP]

import json import numpy as np  # preprocess dataset def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):     def read_map(text):         data = json.loads(text.tobytes())         return np.array(data['article']), np.array(data['summarization'])      def merge_and_pad(article, summary):         # tokenization         # pad to max_seq_length, only truncate the article         tokenized = tokenizer(text=article, text_pair=summary,                               padding='max_length', truncation='only_first', max_length=max_seq_len)         return tokenized['input_ids'], tokenized['input_ids']          dataset = dataset.map(read_map, 'text', ['article', 'summary'])     # change column names to input_ids and labels for the following training     dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])      dataset = dataset.batch(batch_size)     if shuffle:         dataset = dataset.shuffle(batch_size)      return dataset 

因GPT2无中文的tokenizer,我们使用BertTokenizer替代。

from mindnlp.transformers import BertTokenizer  # We use BertTokenizer for tokenizing chinese context. tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') len(tokenizer) 
train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4) 
next(train_dataset.create_tuple_iterator()) 

3.模型构建
3.1构建GPT2ForSummarization模型,注意shift right的操作。

from mindspore import ops from mindnlp.transformers import GPT2LMHeadModel  class GPT2ForSummarization(GPT2LMHeadModel):     def construct(         self,         input_ids = None,         attention_mask = None,         labels = None,     ):         outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)         shift_logits = outputs.logits[..., :-1, :]         shift_labels = labels[..., 1:]         # Flatten the tokens         loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)         return loss 

3.2.动态学习率

from mindspore import ops from mindspore.nn.learning_rate_schedule import LearningRateSchedule  class LinearWithWarmUp(LearningRateSchedule):     """     Warmup-decay learning rate.     """     def __init__(self, learning_rate, num_warmup_steps, num_training_steps):         super().__init__()         self.learning_rate = learning_rate         self.num_warmup_steps = num_warmup_steps         self.num_training_steps = num_training_steps      def construct(self, global_step):         if global_step < self.num_warmup_steps:             return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate         return ops.maximum(             0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))         ) * self.learning_rate 

4.模型训练

num_epochs = 1 warmup_steps = 2000 learning_rate = 1.5e-4  num_training_steps = num_epochs * train_dataset.get_dataset_size() 
from mindspore import nn from mindnlp.transformers import GPT2Config, GPT2LMHeadModel  config = GPT2Config(vocab_size=len(tokenizer)) model = GPT2ForSummarization(config)  lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps) optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler) 
# 记录模型参数数量 print('number of model parameters: {}'.format(model.num_parameters())) 

from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallback

ckpoint_cb = CheckpointCallback(save_path=‘checkpoint’, ckpt_name=‘gpt2_summarization’,
epochs=1, keep_checkpoint_max=2)

trainer = Trainer(network=model, train_dataset=train_dataset,
epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level=‘O1’) # 开启混合精度
5.、模型推理

数据处理,将向量数据变为中文数据

def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):     def read_map(text):         data = json.loads(text.tobytes())         return np.array(data['article']), np.array(data['summarization'])      def pad(article):         tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)         return tokenized['input_ids']     dataset = dataset.map(read_map, 'text', ['article', 'summary'])     dataset = dataset.map(pad, 'article', ['input_ids'])     dataset = dataset.batch(batch_size)     return dataset` 
test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1) 
print(next(test_dataset.create_tuple_iterator(output_numpy=True))) 
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config) 
model.set_train(False) model.config.eos_token_id = model.config.sep_token_id i = 0 for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():     output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)     output_text = tokenizer.decode(output_ids[0].tolist())     print(output_text)     i += 1     if i == 1:         break 

这节内容就学习到这里~

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!