【Python实战】——Python+Opencv是实现车牌自动识别

avatar
作者
筋斗云
阅读量:0

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

该篇文章将以实战形式演示利用Python结合Opencv实现车牌识别,全程涉及图像预处理、车牌定位、车牌分割、通过模板匹配识别结果输出。该项目对于智能交通、车辆管理等领域具有实际应用价值。通过自动识别车牌号码,可以实现车辆追踪、违章查询、停车场管理等功能,提高交通管理的效率和准确性。可用于车牌识别技术学习。

技术要点:

  • OpenCV:用于图像处理和计算机视觉任务。
  • Python:作为编程语言,具有简单易学、资源丰富等优点。
  • 图像处理技术:如灰度化、噪声去除、边缘检测、形态学操作、透视变换等。

1 导入相关模块

import cv2 from matplotlib import pyplot as plt import os import numpy as np from PIL import ImageFont, ImageDraw, Image 

2 相关功能函数定义

2.1 彩色图片显示函数(plt_show0)

def plt_show0(img):     b,g,r = cv2.split(img)     img = cv2.merge([r, g, b])     plt.imshow(img)     plt.show() 

cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]

2.2 灰度图片显示函数(plt_show)

def plt_show(img):     plt.imshow(img,cmap='gray')     plt.show() 

2.3 图像去噪函数(gray_guss)

def gray_guss(image):     image = cv2.GaussianBlur(image, (3, 3), 0)     gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)     return gray_image 

此处演示使用高斯模糊去噪。

cv2.GaussianBlur参数说明:

  • src:输入图像,可以是任意数量的通道,这些通道可以独立处理,但深度应为 CV_8UCV_16UCV_16SCV_32FCV_64F
  • ksize:高斯核的大小,必须是正奇数,例如 (3, 3)、(5, 5) 等。如果 ksize 的值为零,那么它会根据 sigmaXsigmaY 的值来计算。
  • sigmaX:X 方向上的高斯核标准偏差。
  • dst:输出图像,大小和类型与 src 相同。
  • sigmaY:Y 方向上的高斯核标准偏差,如果 sigmaY 是零,那么它会与 sigmaX 的值相同。如果 sigmaY 是负数,那么它会从 ksize.widthksize.height 计算得出。
  • borderType:像素外插法,有默认值。

2 图像预处理

2.1 图片读取

origin_image = cv2.imread('D:/image/car3.jpg') 

  此处演示识别车牌原图:

2.2 高斯去噪

origin_image = cv2.imread('D:/image/car3.jpg') # 复制一张图片,在复制图上进行图像操作,保留原图 image = origin_image.copy() gray_image = gray_guss(image) 

2.3 边缘检测

Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0) absX = cv2.convertScaleAbs(Sobel_x) image = absX 

x方向上的边缘检测(增强边缘信息)

2.4 阈值化

# 图像阈值化操作——获得二值化图 ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU) # 显示灰度图像 plt_show(image) 

  运行结果:

3 车牌定位

3.1 区域选择

kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10)) image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1) # 显示灰度图像 plt_show(image) 

从图像中提取对表达和描绘区域形状有意义的图像分量。

  运行结果:

3.2 形态学操作

# 腐蚀(erode)和膨胀(dilate) kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1)) kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20)) #x方向进行闭操作(抑制暗细节) image = cv2.dilate(image, kernelX) image = cv2.erode(image, kernelX) #y方向的开操作 image = cv2.erode(image, kernelY) image = cv2.dilate(image, kernelY) # 中值滤波(去噪) image = cv2.medianBlur(image, 21) # 显示灰度图像 plt_show(image) 

使用膨胀和腐蚀操作来突出车牌区域。

   运行结果:

3.3 轮廓检测

contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for item in contours:     rect = cv2.boundingRect(item)     x = rect[0]     y = rect[1]     weight = rect[2]     height = rect[3]     # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像     if (weight > (height * 3)) and (weight < (height * 4.5)):         image = origin_image[y:y + height, x:x + weight]         plt_show(image) 

4 车牌字符分割

4.1 高斯去噪

# 图像去噪灰度处理 gray_image = gray_guss(image) 

4.2 阈值化

ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU) plt_show(image) 

  运行结果:

4.3 膨胀操作

#膨胀操作 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4)) image = cv2.dilate(image, kernel) plt_show(image) 

  运行结果:

4.4 车牌号排序

words = sorted(words,key=lambda s:s[0],reverse=False) i = 0 #word中存放轮廓的起始点和宽高 for word in words:     # 筛选字符的轮廓     if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):         i = i+1         if word[2] < 15:             splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]         else:             splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]         word_images.append(splite_image)         print(i) print(words) 

  运行结果:

1 2 3 4 5 6 7 [[2, 0, 7, 70], [12, 6, 30, 55], [15, 7, 7, 9], [46, 6, 32, 55], [83, 30, 9, 9], [96, 7, 32, 55], [132, 8, 32, 55], [167, 8, 30, 54], [202, 62, 7, 6], [203, 7, 30, 55], [245, 7, 12, 54], [266, 0, 12, 70]] 

4.5 分割效果

for i,j in enumerate(word_images):       plt.subplot(1,7,i+1)     plt.imshow(word_images[i],cmap='gray') plt.show() 

  运行结果:

5 模板匹配

5.1 准备模板

# 准备模板(template[0-9]为数字模板;) template = ['0','1','2','3','4','5','6','7','8','9',             'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',             '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',             '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']  # 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表 def read_directory(directory_name):     referImg_list = []     for filename in os.listdir(directory_name):         referImg_list.append(directory_name + "/" + filename)     return referImg_list  # 获得中文模板列表(只匹配车牌的第一个字符) def get_chinese_words_list():     chinese_words_list = []     for i in range(34,64):         #将模板存放在字典中         c_word = read_directory('D:/refer1/'+ template[i])         chinese_words_list.append(c_word)     return chinese_words_list chinese_words_list = get_chinese_words_list()   # 获得英文模板列表(只匹配车牌的第二个字符) def get_eng_words_list():     eng_words_list = []     for i in range(10,34):         e_word = read_directory('D:/refer1/'+ template[i])         eng_words_list.append(e_word)     return eng_words_list eng_words_list = get_eng_words_list()   # 获得英文和数字模板列表(匹配车牌后面的字符) def get_eng_num_words_list():     eng_num_words_list = []     for i in range(0,34):         word = read_directory('D:/refer1/'+ template[i])         eng_num_words_list.append(word)     return eng_num_words_list eng_num_words_list = get_eng_num_words_list() 

此处需提前准备各类字符模板。

5.2 匹配结果

# 获得英文和数字模板列表(匹配车牌后面的字符) def get_eng_num_words_list():     eng_num_words_list = []     for i in range(0,34):         word = read_directory('D:/refer1/'+ template[i])         eng_num_words_list.append(word)     return eng_num_words_list eng_num_words_list = get_eng_num_words_list()   # 读取一个模板地址与图片进行匹配,返回得分 def template_score(template,image):     #将模板进行格式转换     template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)     template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)     #模板图像阈值化处理——获得黑白图     ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU) #     height, width = template_img.shape #     image_ = image.copy() #     image_ = cv2.resize(image_, (width, height))     image_ = image.copy()     #获得待检测图片的尺寸     height, width = image_.shape     # 将模板resize至与图像一样大小     template_img = cv2.resize(template_img, (width, height))     # 模板匹配,返回匹配得分     result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)     return result[0][0]   # 对分割得到的字符逐一匹配 def template_matching(word_images):     results = []     for index,word_image in enumerate(word_images):         if index==0:             best_score = []             for chinese_words in chinese_words_list:                 score = []                 for chinese_word in chinese_words:                     result = template_score(chinese_word,word_image)                     score.append(result)                 best_score.append(max(score))             i = best_score.index(max(best_score))             # print(template[34+i])             r = template[34+i]             results.append(r)             continue         if index==1:             best_score = []             for eng_word_list in eng_words_list:                 score = []                 for eng_word in eng_word_list:                     result = template_score(eng_word,word_image)                     score.append(result)                 best_score.append(max(score))             i = best_score.index(max(best_score))             # print(template[10+i])             r = template[10+i]             results.append(r)             continue         else:             best_score = []             for eng_num_word_list in eng_num_words_list:                 score = []                 for eng_num_word in eng_num_word_list:                     result = template_score(eng_num_word,word_image)                     score.append(result)                 best_score.append(max(score))             i = best_score.index(max(best_score))             # print(template[i])             r = template[i]             results.append(r)             continue     return results   word_images_ = word_images.copy() # 调用函数获得结果 result = template_matching(word_images_) print(result) print( "".join(result)) 

  运行结果:

['渝', 'B', 'F', 'U', '8', '7', '1'] 渝BFU871 

“”.join(result)函数将列表转换为拼接好的字符串,方便结果显示

5.3 匹配效果展示

height,weight = origin_image.shape[0:2] print(height) print(weight)  image_1 = origin_image.copy() cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)  #设置需要显示的字体 fontpath = "font/simsun.ttc" font = ImageFont.truetype(fontpath,64) img_pil = Image.fromarray(image_1) draw = ImageDraw.Draw(img_pil) #绘制文字信息 draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0)) bk_img = np.array(img_pil) print(result) print( "".join(result)) plt_show0(bk_img) 

  运行结果:

6完整代码

# 导入所需模块 import cv2 from matplotlib import pyplot as plt import os import numpy as np from PIL import ImageFont, ImageDraw, Image # plt显示彩色图片 def plt_show0(img):     b,g,r = cv2.split(img)     img = cv2.merge([r, g, b])     plt.imshow(img)     plt.show()      # plt显示灰度图片 def plt_show(img):     plt.imshow(img,cmap='gray')     plt.show()      # 图像去噪灰度处理 def gray_guss(image):     image = cv2.GaussianBlur(image, (3, 3), 0)     gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)     return gray_image  # 读取待检测图片 origin_image = cv2.imread('D:/image/car3.jpg') # 复制一张图片,在复制图上进行图像操作,保留原图 image = origin_image.copy() # 图像去噪灰度处理 gray_image = gray_guss(image) # x方向上的边缘检测(增强边缘信息) Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0) absX = cv2.convertScaleAbs(Sobel_x) image = absX  # 图像阈值化操作——获得二值化图 ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU) # 显示灰度图像 plt_show(image) # 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作 kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10)) image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1) # 显示灰度图像 plt_show(image)   # 腐蚀(erode)和膨胀(dilate) kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1)) kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20)) #x方向进行闭操作(抑制暗细节) image = cv2.dilate(image, kernelX) image = cv2.erode(image, kernelX) #y方向的开操作 image = cv2.erode(image, kernelY) image = cv2.dilate(image, kernelY) # 中值滤波(去噪) image = cv2.medianBlur(image, 21) # 显示灰度图像 plt_show(image)  # 获得轮廓 contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  for item in contours:     rect = cv2.boundingRect(item)     x = rect[0]     y = rect[1]     weight = rect[2]     height = rect[3]     # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像     if (weight > (height * 3)) and (weight < (height * 4.5)):         image = origin_image[y:y + height, x:x + weight]         plt_show(image)   #车牌字符分割 # 图像去噪灰度处理 gray_image = gray_guss(image)  # 图像阈值化操作——获得二值化图    ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU) plt_show(image)  #膨胀操作 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4)) image = cv2.dilate(image, kernel) plt_show(image)   # 查找轮廓 contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) words = [] word_images = [] #对所有轮廓逐一操作 for item in contours:     word = []     rect = cv2.boundingRect(item)     x = rect[0]     y = rect[1]     weight = rect[2]     height = rect[3]     word.append(x)     word.append(y)     word.append(weight)     word.append(height)     words.append(word) # 排序,车牌号有顺序。words是一个嵌套列表 words = sorted(words,key=lambda s:s[0],reverse=False) i = 0 #word中存放轮廓的起始点和宽高 for word in words:     # 筛选字符的轮廓     if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):         i = i+1         if word[2] < 15:             splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]         else:             splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]         word_images.append(splite_image)         print(i) print(words)  for i,j in enumerate(word_images):       plt.subplot(1,7,i+1)     plt.imshow(word_images[i],cmap='gray') plt.show()  #模版匹配 # 准备模板(template[0-9]为数字模板;) template = ['0','1','2','3','4','5','6','7','8','9',             'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',             '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',             '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']  # 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表 def read_directory(directory_name):     referImg_list = []     for filename in os.listdir(directory_name):         referImg_list.append(directory_name + "/" + filename)     return referImg_list  # 获得中文模板列表(只匹配车牌的第一个字符) def get_chinese_words_list():     chinese_words_list = []     for i in range(34,64):         #将模板存放在字典中         c_word = read_directory('D:/refer1/'+ template[i])         chinese_words_list.append(c_word)     return chinese_words_list chinese_words_list = get_chinese_words_list()   # 获得英文模板列表(只匹配车牌的第二个字符) def get_eng_words_list():     eng_words_list = []     for i in range(10,34):         e_word = read_directory('D:/refer1/'+ template[i])         eng_words_list.append(e_word)     return eng_words_list eng_words_list = get_eng_words_list()   # 获得英文和数字模板列表(匹配车牌后面的字符) def get_eng_num_words_list():     eng_num_words_list = []     for i in range(0,34):         word = read_directory('D:/refer1/'+ template[i])         eng_num_words_list.append(word)     return eng_num_words_list eng_num_words_list = get_eng_num_words_list()   # 读取一个模板地址与图片进行匹配,返回得分 def template_score(template,image):     #将模板进行格式转换     template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)     template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)     #模板图像阈值化处理——获得黑白图     ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU) #     height, width = template_img.shape #     image_ = image.copy() #     image_ = cv2.resize(image_, (width, height))     image_ = image.copy()     #获得待检测图片的尺寸     height, width = image_.shape     # 将模板resize至与图像一样大小     template_img = cv2.resize(template_img, (width, height))     # 模板匹配,返回匹配得分     result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)     return result[0][0]   # 对分割得到的字符逐一匹配 def template_matching(word_images):     results = []     for index,word_image in enumerate(word_images):         if index==0:             best_score = []             for chinese_words in chinese_words_list:                 score = []                 for chinese_word in chinese_words:                     result = template_score(chinese_word,word_image)                     score.append(result)                 best_score.append(max(score))             i = best_score.index(max(best_score))             # print(template[34+i])             r = template[34+i]             results.append(r)             continue         if index==1:             best_score = []             for eng_word_list in eng_words_list:                 score = []                 for eng_word in eng_word_list:                     result = template_score(eng_word,word_image)                     score.append(result)                 best_score.append(max(score))             i = best_score.index(max(best_score))             # print(template[10+i])             r = template[10+i]             results.append(r)             continue         else:             best_score = []             for eng_num_word_list in eng_num_words_list:                 score = []                 for eng_num_word in eng_num_word_list:                     result = template_score(eng_num_word,word_image)                     score.append(result)                 best_score.append(max(score))             i = best_score.index(max(best_score))             # print(template[i])             r = template[i]             results.append(r)             continue     return results   word_images_ = word_images.copy() # 调用函数获得结果 result = template_matching(word_images_) print(result) # "".join(result)函数将列表转换为拼接好的字符串,方便结果显示 print( "".join(result))    height,weight = origin_image.shape[0:2] print(height) print(weight)  image_1 = origin_image.copy() cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)  #设置需要显示的字体 fontpath = "font/simsun.ttc" font = ImageFont.truetype(fontpath,64) img_pil = Image.fromarray(image_1) draw = ImageDraw.Draw(img_pil) #绘制文字信息 draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0)) bk_img = np.array(img_pil) print(result) print( "".join(result)) plt_show0(bk_img) 

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!