阅读量:2
文章目录
前言
Flink CDC 是一个基于流的数据集成工具,旨在为用户提供一套功能更加全面的编程接口(API)。 该工具使得用户能够以 YAML 配置文件的形式实现数据库同步,同时也提供了Flink CDC Source Connector API。 Flink CDC 在任务提交过程中进行了优化,并且增加了一些高级特性,如表结构变更自动同步(Schema Evolution)、数据转换(Data Transformation)、整库同步(Full Database Synchronization)以及 精确一次(Exactly-once)语义。
本文通过flink-connector-oracle-cdc来实现Oracle数据库的数据同步。
一、开启归档日志
1)数据库服务器终端,使用sysdba角色连接数据库
sqlplus / as sysdba 或 sqlplus /nolog CONNECT sys/password AS SYSDBA;
2)检查归档日志是否开启
archive log list;
(“Database log mode: No Archive Mode”,日志归档未开启)
(“Database log mode: Archive Mode”,日志归档已开启)
3)启用归档日志
alter system set db_recovery_file_dest_size = 10G; alter system set db_recovery_file_dest = '/opt/oracle/oradata/recovery_area' scope=spfile; shutdown immediate; startup mount; alter database archivelog; alter database open;
注意:
启用归档日志需要重启数据库。
归档日志会占用大量的磁盘空间,应定期清除过期的日志文件
4)启动完成后重新执行 archive log list; 查看归档打开状态
二、创建flinkcdc专属用户
2.1 对于Oracle 非CDB数据库,执行如下sql
CREATE USER flinkuser IDENTIFIED BY flinkpw DEFAULT TABLESPACE LOGMINER_TBS QUOTA UNLIMITED ON LOGMINER_TBS; GRANT CREATE SESSION TO flinkuser; GRANT SET CONTAINER TO flinkuser; GRANT SELECT ON V_$DATABASE to flinkuser; GRANT FLASHBACK ANY TABLE TO flinkuser; GRANT SELECT ANY TABLE TO flinkuser; GRANT SELECT_CATALOG_ROLE TO flinkuser; GRANT EXECUTE_CATALOG_ROLE TO flinkuser; GRANT SELECT ANY TRANSACTION TO flinkuser; GRANT LOGMINING TO flinkuser; GRANT ANALYZE ANY TO flinkuser; GRANT CREATE TABLE TO flinkuser; -- need not to execute if set scan.incremental.snapshot.enabled=true(default) GRANT LOCK ANY TABLE TO flinkuser; GRANT ALTER ANY TABLE TO flinkuser; GRANT CREATE SEQUENCE TO flinkuser; GRANT EXECUTE ON DBMS_LOGMNR TO flinkuser; GRANT EXECUTE ON DBMS_LOGMNR_D TO flinkuser; GRANT SELECT ON V_$LOG TO flinkuser; GRANT SELECT ON V_$LOG_HISTORY TO flinkuser; GRANT SELECT ON V_$LOGMNR_LOGS TO flinkuser; GRANT SELECT ON V_$LOGMNR_CONTENTS TO flinkuser; GRANT SELECT ON V_$LOGMNR_PARAMETERS TO flinkuser; GRANT SELECT ON V_$LOGFILE TO flinkuser; GRANT SELECT ON V_$ARCHIVED_LOG TO flinkuser; GRANT SELECT ON V_$ARCHIVE_DEST_STATUS TO flinkuser;
2.2 对于Oracle CDB数据库,执行如下sql
CREATE USER flinkuser IDENTIFIED BY flinkpw DEFAULT TABLESPACE logminer_tbs QUOTA UNLIMITED ON logminer_tbs CONTAINER=ALL; GRANT CREATE SESSION TO flinkuser CONTAINER=ALL; GRANT SET CONTAINER TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$DATABASE to flinkuser CONTAINER=ALL; GRANT FLASHBACK ANY TABLE TO flinkuser CONTAINER=ALL; GRANT SELECT ANY TABLE TO flinkuser CONTAINER=ALL; GRANT SELECT_CATALOG_ROLE TO flinkuser CONTAINER=ALL; GRANT EXECUTE_CATALOG_ROLE TO flinkuser CONTAINER=ALL; GRANT SELECT ANY TRANSACTION TO flinkuser CONTAINER=ALL; GRANT LOGMINING TO flinkuser CONTAINER=ALL; GRANT CREATE TABLE TO flinkuser CONTAINER=ALL; -- need not to execute if set scan.incremental.snapshot.enabled=true(default) GRANT LOCK ANY TABLE TO flinkuser CONTAINER=ALL; GRANT CREATE SEQUENCE TO flinkuser CONTAINER=ALL; GRANT EXECUTE ON DBMS_LOGMNR TO flinkuser CONTAINER=ALL; GRANT EXECUTE ON DBMS_LOGMNR_D TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$LOG TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$LOG_HISTORY TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$LOGMNR_LOGS TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$LOGMNR_CONTENTS TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$LOGMNR_PARAMETERS TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$LOGFILE TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$ARCHIVED_LOG TO flinkuser CONTAINER=ALL; GRANT SELECT ON V_$ARCHIVE_DEST_STATUS TO flinkuser CONTAINER=ALL;
三、指定oracle表、库级启用
-- 指定表启用补充日志记录: ALTER TABLE databasename.tablename ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS; -- 为数据库的所有表启用 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS; -- 指定数据库启用补充日志记录 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
四、使用flink-connector-oracle-cdc实现数据库同步
4.1 引入pom依赖
<dependency> <groupId>com.ververica</groupId> <artifactId>flink-connector-oracle-cdc</artifactId> <version>2.4.0</version> </dependency>
4.1 Java主代码
package test.datastream.cdc.oracle; import com.ververica.cdc.connectors.oracle.OracleSource; import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.source.SourceFunction; import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.types.Row; import test.datastream.cdc.oracle.function.CacheDataAllWindowFunction; import test.datastream.cdc.oracle.function.CdcString2RowMap; import test.datastream.cdc.oracle.function.DbCdcSinkFunction; import java.util.Properties; public class OracleCdcExample { public static void main(String[] args) throws Exception { Properties properties = new Properties(); //数字类型数据 转换为字符 properties.setProperty("decimal.handling.mode", "string"); SourceFunction<String> sourceFunction = OracleSource.<String>builder() // .startupOptions(StartupOptions.latest()) // 从最晚位点启动 .url("jdbc:oracle:thin:@localhost:1521:orcl") .port(1521) .database("ORCL") // monitor XE database .schemaList("c##flink_user") // monitor inventory schema .tableList("c##flink_user.TEST2") // monitor products table .username("c##flink_user") .password("flinkpw") .debeziumProperties(properties) .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String .build(); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStreamSource<String> source = env.addSource(sourceFunction).setParallelism(1);// use parallelism 1 for sink to keep message ordering SingleOutputStreamOperator<Row> mapStream = source.flatMap(new CdcString2RowMap()); SingleOutputStreamOperator<Row[]> winStream = mapStream.windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5))) .process(new CacheDataAllWindowFunction()); //批量同步 winStream.addSink(new DbCdcSinkFunction(null)); env.execute(); } }
4.1 json转换为row
package test.datastream.cdc.oracle.function; import cn.com.victorysoft.common.configuration.VsConfiguration; import org.apache.flink.api.common.functions.RichFlatMapFunction; import org.apache.flink.configuration.Configuration; import org.apache.flink.types.Row; import org.apache.flink.types.RowKind; import org.apache.flink.util.Collector; import test.datastream.cdc.CdcConstants; import java.sql.Timestamp; import java.util.HashMap; import java.util.Map; import java.util.Set; /** * @desc cdc json解析,并转换为Row */ public class CdcString2RowMap extends RichFlatMapFunction<String, Row> { private Map<String,Integer> columnMap =new HashMap<>(); @Override public void open(Configuration parameters) throws Exception { columnMap.put("ID",0); columnMap.put("NAME",1); columnMap.put("DESCRIPTION",2); columnMap.put("AGE",3); columnMap.put("CREATE_TIME",4); columnMap.put("SCORE",5); columnMap.put("C_1",6); columnMap.put("B_1",7); } @Override public void flatMap(String s, Collector<Row> collector) throws Exception { System.out.println("receive: "+s); VsConfiguration conf=VsConfiguration.from(s); String op = conf.getString(CdcConstants.K_OP); VsConfiguration before = conf.getConfiguration(CdcConstants.K_BEFORE); VsConfiguration after = conf.getConfiguration(CdcConstants.K_AFTER); Row row =null; if(CdcConstants.OP_C.equals(op)){ //插入,使用after数据 row = convertToRow(after); row.setKind(RowKind.INSERT); }else if(CdcConstants.OP_U.equals(op)){ //更新,使用after数据 row = convertToRow(after); row.setKind(RowKind.UPDATE_AFTER); }else if(CdcConstants.OP_D.equals(op)){ //删除,使用before数据 row = convertToRow(before); row.setKind(RowKind.DELETE); }else { //r 操作,使用after数据 row = convertToRow(after); row.setKind(RowKind.INSERT); } collector.collect(row); } private Row convertToRow(VsConfiguration data){ Set<String> keys = data.getKeys(); int size = keys.size(); Row row=new Row(8); int i=0; for (String key:keys) { Integer index = this.columnMap.get(key); Object value=data.get(key); if(key.equals("CREATE_TIME")){ //long日期转timestamp value=long2Timestamp((Long)value); } row.setField(index,value); } return row; } private static java.sql.Timestamp long2Timestamp(Long time){ Timestamp timestamp = new Timestamp(time/1000); System.out.println(timestamp); return timestamp; } }