【C语言】结构体(及位段)

avatar
作者
猴君
阅读量:2

               你好!感谢支持孔乙己的新作,本文就结构体与大家分析我的思路。

希望能大佬们多多纠正及支持 !!!

7edab4be0868428c9c0a750f6d39f83d.jpeg

个人主页:爱摸鱼的孔乙己-CSDN博客  欢迎 互粉哦🙈🙈!

目录

1. 声明结构体

1.1. 结构体的声明

1.2. 结构体变量的创建与初始化

1.3. 结构体的特殊声明

1.4. 结构体的自引用

2. 结构体内存对齐

 2.1. 对齐规则

         2.1.1. 常规内存对齐

         2.1.2. 嵌套结构体内存对齐

 2.2. 为什么存在结构体对齐

         2.2.1. 平台原因(移植原因)

         2.2.2. 性能原因

         2.2.3. 改善方法

 2.3. 修改默认对齐数

3. 结构体实现传参

4 . 位段

  4.1. 什么是位段

  4.2. 位段的内存分配

  4.3. 位段的跨平台问题

  4.4. 位段的应用

  4.5. 位段注意事项


 e9ee10e11cde440d977cf2cb49399912.jpeg

7a4f0716e2a04268bb0c64386067a51e.gif


1. 声明结构体


 Leading  ~~   结构体(struct)是一种用户自定义的数据类型,它可以包含多个不同数据类型的成员变量,这些成员变量可以根据需要进行组合,形成一个新的数据类型。结构体可以用来表示现实世界中的复杂数据结构,比如表示一个学生或者一辆车的信息等。

 1.1. 结构体的声明

        结构体是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。  

     例如,描述一个学生的信息:

struct student   { 	char name[20];//姓名 	int age;//年龄 	char sex[9];//性别 	char number[20];//学号  }; 

         其中,包含学生的姓名、年龄、性别、学号这些字符数组,整形数据等等不同数据类型的成员变量。

1.2. 结构体变量的创建与初始化

          创建结构体变量,对其进行初始化,可以依次进行赋值(输入数据),也可以使用“ . +成员变量名 ”来指定顺序赋值(输入数据 )。

#include <stdio.h> struct Stu {  char name[20];//名字  int age;//年龄  char sex[5];//性别  char id[20];//学号 }; int main() {  //按照结构体成员的顺序初始化  struct Stu s = { "张三", 20, "男", "20230818001" };  printf("name: %s\n", s.name);  printf("age : %d\n", s.age);  printf("sex : %s\n", s.sex);  printf("id : %s\n", s.id);    //按照指定的顺序初始化  struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex =  "⼥" };  printf("name: %s\n", s2.name);  printf("age : %d\n", s2.age);  printf("sex : %s\n", s2.sex);  printf("id : %s\n", s2.id);  return 0; }

1.3. 结构体的特殊声明

          在声明结构体的时候,可以不完全的声明。当然,这样声明的结构体只能在创建的时候对其      进行赋值(输入数据)。

//创建匿名结构体变量 struct { 	char name[20]; 	int age; 	double height; } S = { "李四", 23, 1.82 }; 

          如果要再次使用,必须要对结构体类型重命名(使用typedef对其重命名)如下:

//对匿名结构体重命名 typedef struct Stu  { 	char name[20]; 	int age; 	double height; }Stu; 

1.4. 结构体的自引用

       在结构中包含⼀个类型为该结构本⾝的成员是否可以? ⽐如,定义⼀个链表的节点,如下:
struct Node {  int data;  struct Node next; };

      究其根本,其实是行不通的,毕竟在一个结构体中再包含一个同类型的结构体变量,内存就会   变得无穷大,我们可以采取指针的方式进行自引用,如下:

struct Node {  int data;  struct Node* next; };
       在结构体自引⽤使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,    看看下面的代码,可⾏吗?
typedef struct {  int data;  Node* next; } Node;
        答案是不行的,因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。 解决方案如下: 定义结构体不要使⽤匿名结构体了 !
typedef struct Node {  int data;  struct Node* next; } Node;

268d4e462d664d0f99e9588e4bd4be46.jpeg


2. 结构体内存对齐


       2.1. 对齐规则

              首先,我们来了解一下结构体内存对齐规则,如下:

1.  结构体的第一个成员对齐到结构体变量起始位置偏移量为0的地址。
2.  其他成员变量要对齐到对齐数的整数倍的地址处。
  •      对齐数 = 编译器默认的一个对齐数与该成员变量大小的较小值
  •      Visual Stdio 2022中默认值为8(字节)
  •      Linux中gcc没有对齐数,因此对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数 (结构体中每个成员变量都有⼀个对齐数,所有对齐数中最⼤        的)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,
    结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

          我们通过一些例题具体分析结构体对齐的场景,如下:

  2.1.1. 常规内存对齐

struct s1 { 	char c1; 	int i; 	char c2; };

 在s1结构体中,有char类型的c1,int类型的i以及char类型的c2,如果仅仅从类型字节大小来说,这里应该占用1+4+1=6(字节),但由于结构体中存在内存对齐,结果却是12(字节)。

究其原因, 我们分析一下这些变量在内存中的排布情况:

 

        首先,结构体的第一个成员对齐到结构体变量起始位置偏移量为0的地址,所以我们将char (绿色区块)放在起始位置偏移量为0的地址。对于int  i (占用4个字节)要对齐到对齐数的整数倍(VS中默认对齐数是8,int是4,因此对齐数取4)的地址处,也就是偏移量为4的地址处,因此前3个字节将会被浪费。紧接着char c2(黄色区块)默认对齐数是1,又根据“ 结构体总大小为最大对齐数 (结构体中每个成员变量都有⼀个对齐数,所有对齐数中最⼤的)的整数倍”,也就是4的整数倍(12),因此也会损耗3个字节空间。

2.1.2. 嵌套结构体内存对齐

    根据上述结果推算出struct S3在内存中占用16个字节,将其嵌套在struct S4中结果会是多少呢

struct S3 { 	double d; 	char c; 	int i; };  struct S4 { 	char c1; 	struct S3 s3; 	double d; }; int main() { 	//printf("%d\n", sizeof(struct S3)); 	printf("%zd\n", sizeof(struct S4)); 	return 0; }

这里我们就要注意对齐的最后一条规则:

4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,
    结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

 从上述源码中,不难看出嵌套结构体成员(struct S3)的最大对齐数就是8,以及S4中最大对齐数也是8,因此结构体(struct S4)的大小就8的整数倍,从内存排列情况如下:

        结果,无疑就是占用32个字节 ! !!

        

 

       2.2. 为什么存在结构体对齐

2.2.1. 平台原因(移植原因)

         毕竟,不是所有硬件平台都能访问任意地址上的任意数据,对于某些硬件平台只能在某些地址处取某些特特定类型的数据,否则会发生硬件异常。

2.2.2. 性能原因

         数据结构(尤其是栈)应该尽可能在自然边界对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存仅需要一次访问。假如一个处理器总是从内存中取8个字节,则地址必须是8的倍数。假如我们能保证所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

 总体来说:结构体的内存对齐是拿空间来换取时间的做法。

2.2.3. 改善方法

         我们在设计结构体的时候,我们既需要满足对齐,又要节省空间,因此,我们可以在创建结构体的时候,让占用空间小的成员集中在一起,如下:

struct S1 { 	char c; 	int i; 	char b; }; 
struct S1 { 	char b; 	char c; 	int i; };

 

         在这两组数据中,我们可以发现,他们的成员变量是一致的,但由于在创建时先后顺序不一致,致使他们在内存中存储情况不相同。

       2.3. 修改默认对齐数

            #pragma 这个预处理指令,可以改变编译器的默认对⻬数。

#include <stdio.h> #pragma pack(1)//设置默认对⻬数为1 struct S {  char c1;  int i;  char c2; }; #pragma pack()//取消设置的对⻬数,还原为默认 int main() {  //输出的结果是什么?  printf("%d\n", sizeof(struct S));  return 0; }

 


3. 结构体实现传参


我们在传入参数的时候,有两种形式,一种是“传值输入”,另一种是“传址输入”。

struct S {  int data[1000];  int num; }; struct S s = {{1,2,3,4}, 1000};  //结构体传参 void print1(struct S s) {  printf("%d\n", s.num); }  //结构体地址传参 void print2(const struct S* ps) {  printf("%d\n", ps->num); } int main() {  print1(s); //传结构体  print2(&s); //传地址  return 0; }

通过实践说明 ,print2相对于print1,会更加优越,原因如下:

        1.   函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销
         2 . 如果传递⼀个结构体对象的时候,结构体过⼤,
         参数压栈的的系统开销⽐较⼤,所以会导致性能的下降

总而言之, 结构体传参的时候,我们要传递结构体的地址。

 


4 . 位段


     4.1. 什么是位段

我们可以定义一个结构体中的字段使用的位数(bit位)。这样可以在存储数据时更加灵活和节省空间。接着我们分析一下位段与结构体的一些差异,如下:

    1 . 位段的成员必须是 intunsigned int signed int ,在C99中位段成员的类型也可以选择其他类型
    2 .  位段的成员名后边有⼀个冒号和⼀个数字
struct A {  int _a:2;  int _b:5;  int _c:10;  int _d:30; };

     4.2. 位段的内存分配

          1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
          2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
          3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
#include<stdio.h> struct S { 	char a : 3; 	char b : 4; 	char c : 5; 	char d : 4; }; int main() { 	struct S s = { 0 }; 	s.a = 10; 	s.b = 12; 	s.c = 3; 	s.d = 4; 	printf("%zd", sizeof(struct S )); 	return 0; } 

 

相对比结构体而言,位段有效地节省了空间大小 ,接下来,我们观察位段在内存中的具体情况

 

        

 

     4.3. 位段的跨平台问题

1 .  int 位段被当成有符号数还是无符号数是不确定的
2 . 位段中最大位的数目不能确定(16位机器最大16,32位机器上最大32)
3 . 位段中的成员在内存中从左向右分配,还是反之,标准尚未定义
4 . 当一个结构包含两个位段,第二个位段成员比较大,无法容纳第一个位段剩余的位时
     是选择舍弃还是继续利用,也是不确定的

     4.4. 位段的应用

        下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥ 使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络 的畅通是有帮助的。

 

     4.5. 位段注意事项

        因为位段中的成员变量有可能在同一个字节上,因此有些成员的起始地址并不是某个字节的地址,那么这些位置其实就是没有地址的,再者说,内存中每个字节分配一个地址,故而一个字节内部的bit位是没有地址的。所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先⼊放在⼀个变量中,然后赋值给位段的成员。

struct A {  int _a : 2;  int _b : 5;  int _c : 10;  int _d : 30; }; int main() {  struct A sa = {0};  scanf("%d", &sa._b);//这是错误的    //正确的⽰范  int b = 0;  scanf("%d", &b);  sa._b = b;  return 0; }

d8385f1a0ee54905b83ab0e6bd609e36.jpeg

 8fb80a710692409b946db9d128e02434.gif

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!