阅读量:0
相关性分析:指对两个或多个具有相关性的变量元素进行分析
1.散点图和相关性热力图
2.相关系数
相关系数最早是由统计学家卡尔 皮尔逊设计的统计指标,是研究变量之间线性相关承兑的值,一般用字母 r 表示。
2.1Pearson相关系数
Pearson相关系数是衡量两个数据集合是否在一条线上面,用于衡量变量间的线性关系。
这里是引用如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:
(1)、当相关系数为0时,X和Y两变量无关系。
(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。
(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
通常情况下通过以下取值范围判断变量的相关强度: 相关系数 0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关
2.2 Spearman相关系数
Spearman相关系数适用于不符合正态分布或者总体分布类型未知的数据,Spearman用于描述两个变量之间关联的程度与方向。
待补充
2.3Kendall等级相关系数
Kendall等级相关系数是用于反应分类相关变量的相关指标,适用于两个变量均为有序分类的情况,对相关的有序变量进行非参数性相关检验。
待补充
3.Python代码讲解
3.1 数据集
日期,蜜汁焗餐包,铁板酸菜豆腐,香煎韭菜饺,香煎罗卜糕,原汁原味菜心 2015/1/1,13,18,10,10,27 2015/1/2,9,19,13,14,13 2015/1/3,8,7,11,10,9 2015/1/4,10,9,13,14,13 2015/1/5,12,17,11,13,14 2015/1/6,8,12,11,5,9 2015/1/7,5,10,8,10,7 2015/1/8,7,6,12,11,5 2015/1/12,0,5,5,7,10 2015/1/13,8,6,9,8,9 2015/1/14,4,8,5,3,10 2015/1/15,8,15,9,13,9 2015/1/16,11,14,9,9,15 2015/1/17,14,16,9,4,14 2015/1/18,9,8,12,9,15 2015/1/19,9,10,6,11,11 2015/1/20,11,8,14,6,13 2015/1/21,7,1,5,12,8 2015/1/22,13,13,5,11,11 2015/1/23,5,8,7,8,11 2015/1/24,7,9,7,10,9 2015/1/25,7,14,7,6,8 2015/1/26,6,9,12,7,5 2015/1/27,12,6,12,9,4 2015/1/28,8,7,12,10,6 2015/1/29,7,8,10,10,11 2015/1/30,7,9,16,10,11 2015/1/31,8,8,10,10,9 2015/2/1,6,6,11,6,9
3.2代码讲解
3.2.1 读取excel文档,Pearson相关系数+热力图
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # 读取菜品销售量数据 filepath = 'C:/Users/14210/Desktop/机器学习代码/data/cor.xlsx' cor = pd.read_excel(filepath) # 计算相关系数矩阵,包含了任意两个菜品间的相关系数 print('5种菜品销售量的相关系数矩阵为:\n', cor.corr()) # 绘制相关性热力图 plt.subplots(figsize=(8, 8)) # 设置画面大小 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 sns.heatmap(cor.corr(), annot=True, vmax=1, square=True, cmap="Blues") plt.title('相关性热力图') plt.show()
3.2.2 结果图
3.2.3 读取csv文档,Pearson相关系数+热力图
# 读取csv文件 import pandas as pd import seaborn as sns import matplotlib.pyplot as plt filepath = 'C:/Users/14210/Desktop/机器学习代码/data/cor.csv' data = pd.read_csv(filepath) df = pd.DataFrame(data) # 计算出相关系数并输出,这里选择的是皮尔逊相关系数 cor = data.corr(method='pearson') print(cor) # 输出相关系数 rc = {'font.sans-serif': 'SimHei', 'axes.unicode_minus': False} sns.set(font_scale=0.7,rc=rc) # 设置字体大小 sns.heatmap(cor, annot=True, # 显示相关系数的数据 center=0.5, # 居中 fmt='.2f', # 只显示两位小数 linewidth=0.5, # 设置每个单元格的距离 linecolor='blue', # 设置间距线的颜色 vmin=0, vmax=1, # 设置数值最小值和最大值 xticklabels=True, yticklabels=True, # 显示x轴和y轴 square=True, # 每个方格都是正方形 cbar=True, # 绘制颜色条 cmap='coolwarm_r', # 设置热力图颜色 ) plt.savefig("我是相关热力图.png",dpi=600)#保存图片,分辨率为600 plt.ion() #显示图片
3.2.4 结果图
4.结果分析
根据热力图可以看出,原汁原味菜心与铁板酸菜豆腐、蜜汁煸餐包这两种菜品的相关性较强,说明大部分客户对这3种菜品的偏好程度相当。