实验室的服务器升级了3090,用来跑alphafold,在此记录部署过程
一、环境准备
#miniconda最新版下载安装
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
#`curl`, `git`, and `wget`更新或安装
sudo apt update
sudo apt -y install curl git wget
#安装gcc
sudo apt update
sudo apt install build-essential
#查看gcc版本
gcc --version
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#CUDA下载安装
#https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local
#linux-x86_64-WSL-Ubuntu-2.0-deb(local)
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.3.2/local_installers/cuda-repo-wsl-ubuntu-12-3-local_12.3.2-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-12-3-local_12.3.2-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-3-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-3
#根据colabfold当前版本的要求,更改jax版本
#升级jax
pip install -U "jax[cuda12_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install --upgrade "jax[cuda12_local]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
#降级到0.4.23
pip install --upgrade "jax[cuda12_pip]==0.4.23" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
二、部署ColabFold本地版
# LocalColabFold安装
wget https://raw.githubusercontent.com/YoshitakaMo/localcolabfold/main/install_colabbatch_linux.sh
bash install_colabbatch_linux.sh
#添加环境变量PATH
nano ~/.bashrc
#/home/localcolabfold/colabfold-conda/bin
export PATH="/home/localcolabfold/colabfold-conda/bin:$PATH"
export TF_FORCE_UNIFIED_MEMORY="1"
export XLA_PYTHON_CLIENT_MEM_FRACTION="4.0"
export XLA_PYTHON_CLIENT_ALLOCATOR="platform"
export TF_FORCE_GPU_ALLOW_GROWTH="true"
source ~/.bashrc
#运行测试
conda activate /home/localcolabfold/colabfold-conda
colabfold_batch <directory_with_fasta_files> <result_dir>