Torch中的Batch Normalization有什么用

avatar
作者
筋斗云
阅读量:1

Batch Normalization在Torch中的作用是在神经网络的训练过程中对每个batch的输入进行归一化处理,以加速训练过程并提高模型的泛化能力。具体来说,Batch Normalization可以使得每一层网络的输入保持零均值和单位方差,有助于解决梯度消失和梯度爆炸的问题,同时也有助于加速训练收敛速度和提高模型的稳定性。通过Batch Normalization,可以减少一些训练技巧的需求,如使用更小的学习率、更好的权重初始化等。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!