DeepLearning4j分布式训练怎么实现

avatar
作者
猴君
阅读量:1

DeepLearning4j可以通过使用Apache Spark或者Hadoop来实现分布式训练。下面是使用Apache Spark来实现分布式训练的步骤:

  1. 在pom.xml文件中添加以下依赖:
<dependency>     <groupId>org.deeplearning4j</groupId>     <artifactId>deeplearning4j-core</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.deeplearning4j</groupId>     <artifactId>deeplearning4j-ui_2.10</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.deeplearning4j</groupId>     <artifactId>deeplearning4j-scaleout</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.nd4j</groupId>     <artifactId>nd4j-native</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.nd4j</groupId>     <artifactId>nd4j-cuda-9.2-platform</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.datavec</groupId>     <artifactId>datavec-api</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.datavec</groupId>     <artifactId>datavec-local</artifactId>     <version>1.0.0-beta3</version> </dependency> <dependency>     <groupId>org.datavec</groupId>     <artifactId>datavec-spark_2.10</artifactId>     <version>1.0.0-beta3</version> </dependency> 
  1. 创建一个SparkConf对象和JavaSparkContext对象:
SparkConf conf = new SparkConf(); conf.setAppName("DL4J Spark"); JavaSparkContext sc = new JavaSparkContext(conf); 
  1. 加载数据集并创建一个DataSet对象:
JavaRDD<String> data = sc.textFile("hdfs://path/to/data.txt"); JavaRDD<DataSet> dataSet = data.map(new StringToDataSet()); 
  1. 创建一个MultiLayerConfiguration对象并设置神经网络的配置:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()     .seed(12345)     .weightInit(WeightInit.XAVIER)     .updater(new Adam(0.01))     .list()     .layer(0, new DenseLayer.Builder().nIn(784).nOut(250)         .activation(Activation.RELU)         .build())     .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)         .activation(Activation.SOFTMAX)         .nIn(250).nOut(10).build())     .build(); 
  1. 创建一个ComputationGraph对象并使用SparkComputationGraph对象进行训练:
ComputationGraph model = new ComputationGraph(conf); model.init(); SparkComputationGraph sparkNet = new SparkComputationGraph(sc, model); sparkNet.fit(dataSet); 

通过以上步骤,就可以使用DeepLearning4j和Apache Spark实现分布式训练。同样的,如果要使用Hadoop来实现分布式训练,可以使用datavec-hadoop依赖来读取HDFS中的数据集,并使用SparkComputationGraph对象进行训练。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!