PaddlePaddle中的图像分类任务如何实现

avatar
作者
筋斗云
阅读量:3

在PaddlePaddle中实现图像分类任务通常使用卷积神经网络(CNN)。以下是一个简单的图像分类示例:

  1. 导入必要的库和模块:
import paddle import paddle.nn.functional as F from paddle.vision import transforms 
  1. 定义一个简单的卷积神经网络模型:
class Net(paddle.nn.Layer):     def __init__(self, num_classes=10):         super(Net, self).__init__()         self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)         self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)         self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)         self.pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)         self.fc1 = paddle.nn.Linear(in_features=64*8*8, out_features=128)         self.fc2 = paddle.nn.Linear(in_features=128, out_features=num_classes)      def forward(self, x):         x = self.pool1(F.relu(self.conv1(x)))         x = self.pool2(F.relu(self.conv2(x)))         x = paddle.flatten(x, start_axis=1)         x = F.relu(self.fc1(x))         x = self.fc2(x)         return x 
  1. 准备数据和数据增强:
transform = transforms.Compose([     transforms.Resize(size=32),     transforms.RandomHorizontalFlip(),     transforms.ToTensor() ])  train_dataset = paddle.vision.datasets.CIFAR10(mode='train', transform=transform) train_loader = paddle.io.DataLoader(train_dataset, batch_size=32, shuffle=True)  test_dataset = paddle.vision.datasets.CIFAR10(mode='test', transform=transform) test_loader = paddle.io.DataLoader(test_dataset, batch_size=32, shuffle=False) 
  1. 训练模型:
model = Net() optimizer = paddle.optimizer.Adam(parameters=model.parameters()) criterion = paddle.nn.CrossEntropyLoss()  model.train()  for epoch in range(10):     for data in train_loader:         images, labels = data         outputs = model(images)         loss = criterion(outputs, labels)                  optimizer.clear_grad()         loss.backward()         optimizer.step() 
  1. 在测试集上评估模型:
model.eval()  accs = [] for data in test_loader:     images, labels = data     outputs = model(images)     acc = paddle.metric.accuracy(outputs, labels)     accs.append(acc.numpy())      print("Test Accuracy: ", sum(accs) / len(accs)) 

这是一个简单的图像分类示例,实际应用中可以根据需求调整网络结构、数据增强方式、优化器等参数进行优化。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!