tensorflow中vgg搭建的步骤是什么

avatar
作者
猴君
阅读量:0

在TensorFlow中搭建VGG模型的步骤如下:

  1. 导入必要的库和模块:
import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense 
  1. 定义VGG网络的结构:
def build_vgg(input_shape):     model = tf.keras.Sequential()          # Block 1     model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=input_shape))     model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))     model.add(MaxPooling2D((2, 2), strides=(2, 2)))          # Block 2     model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))     model.add(MaxPooling2D((2, 2), strides=(2, 2)))          # Block 3     model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))     model.add(MaxPooling2D((2, 2), strides=(2, 2)))          # Block 4     model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))     model.add(MaxPooling2D((2, 2), strides=(2, 2))          # Block 5     model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))     model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))     model.add(MaxPooling2D((2, 2), strides=(2, 2))          model.add(Flatten())          # Fully connected layers     model.add(Dense(4096, activation='relu'))     model.add(Dense(4096, activation='relu'))     model.add(Dense(1000, activation='softmax'))          return model 
  1. 编译模型并进行训练:
input_shape = (224, 224, 3) vgg_model = build_vgg(input_shape) vgg_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) vgg_model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(validation_images, validation_labels)) 

这样就可以在TensorFlow中搭建VGG模型并进行训练了。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!