在Keras中如何处理缺失值

avatar
作者
筋斗云
阅读量:0

在Keras中处理缺失值通常需要在数据准备阶段进行处理。以下是一些处理缺失值的方法:

  1. 删除包含缺失值的样本:可以通过使用dropna()方法来删除包含缺失值的样本。
import pandas as pd  # 删除包含缺失值的样本 data = data.dropna() 
  1. 填充缺失值:可以使用fillna()方法来填充缺失值。
# 使用平均值填充缺失值 data.fillna(data.mean(), inplace=True) 
  1. 使用Keras的SimpleImputer类来填充缺失值:
from keras.preprocessing import imputation  imputer = imputation.SimpleImputer(missing_values=np.nan, strategy='mean') data = imputer.fit_transform(data) 

在选择处理缺失值的方法时,需要根据数据的特点和具体情况来选择合适的方法。

    广告一刻

    为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!