阅读量:0
要使用C++矩阵类解决线性方程组,首先需要创建一个矩阵类,然后利用高斯消元法或其他数值方法求解线性方程组
- 创建矩阵类:
#include<iostream> #include<vector> #include <cmath> class Matrix { public: Matrix(int rows, int cols) : rows_(rows), cols_(cols), data_(rows * cols, 0) {} double& operator()(int row, int col) { return data_[row * cols_ + col]; } const double& operator()(int row, int col) const { return data_[row * cols_ + col]; } int rows() const { return rows_; } int cols() const { return cols_; } private: int rows_, cols_; std::vector<double> data_; };
- 实现高斯消元法:
void swap_rows(Matrix& matrix, int row1, int row2) { for (int col = 0; col< matrix.cols(); ++col) { std::swap(matrix(row1, col), matrix(row2, col)); } } void scale_row(Matrix& matrix, int row, double scale) { for (int col = 0; col< matrix.cols(); ++col) { matrix(row, col) *= scale; } } void add_scaled_row(Matrix& matrix, int from_row, int to_row, double scale) { for (int col = 0; col< matrix.cols(); ++col) { matrix(to_row, col) += scale * matrix(from_row, col); } } std::vector<double> gauss_jordan(Matrix matrix) { int n = matrix.rows(); for (int i = 0; i < n; ++i) { // 寻找主元 int max_row = i; for (int k = i + 1; k < n; ++k) { if (fabs(matrix(k, i)) > fabs(matrix(max_row, i))) { max_row = k; } } // 交换行 if (max_row != i) { swap_rows(matrix, i, max_row); } // 消元 for (int j = i + 1; j < n; ++j) { double scale = matrix(j, i) / matrix(i, i); add_scaled_row(matrix, i, j, -scale); } } // 回代求解 std::vector<double> result(n); for (int i = n - 1; i >= 0; --i) { result[i] = matrix(i, n); for (int j = i + 1; j < n; ++j) { result[i] -= matrix(i, j) * result[j]; } result[i] /= matrix(i, i); } return result; }
- 使用矩阵类和高斯消元法解决线性方程组:
int main() { // 定义线性方程组的系数矩阵和常数向量 Matrix A(3, 3); A(0, 0) = 2; A(0, 1) = 3; A(0, 2) = 4; A(1, 0) = 6; A(1, 1) = 7; A(1, 2) = 8; A(2, 0) = 1; A(2, 1) = 5; A(2, 2) = 9; Matrix b(3, 1); b(0, 0) = 10; b(1, 0) = 11; b(2, 0) = 13; // 合并系数矩阵和常数向量 Matrix Ab(A.rows(), A.cols() + 1); for (int i = 0; i < A.rows(); ++i) { for (int j = 0; j < A.cols(); ++j) { Ab(i, j) = A(i, j); } Ab(i, A.cols()) = b(i, 0); } // 使用高斯消元法求解线性方程组 std::vector<double> x = gauss_jordan(Ab); // 输出结果 std::cout << "Solution: "; for (const auto& value : x) { std::cout<< value << " "; } std::cout<< std::endl; return 0; }
这个例子中,我们创建了一个矩阵类,实现了高斯消元法,并使用它来求解一个线性方程组。你可以根据需要修改矩阵A和向量b来解决不同的线性方程组。